京公网安备 11010802034615号
经营许可证编号:京B2-20210330
==========在做进一步讲解之前,依旧先对活跃用户进行定义===================
AU(Active Users)活跃用户:统计周期内,登录过游戏的用户数;根据统计周期不同又划分为DAU(日活跃用户),WAU(周活跃用户),MAU(月活跃用户);
备注:入门篇中所定义的“用户”均以“账号”进行衡量;账号:游戏账号库中的唯一标识,在单款游戏中全局唯一;
==========================================================
仍然从应收的公式进行推导 Revenue = AU * PUR * ARPPU;在活跃用户规模固定的前提下,PUR 和 ARPPU 是衡量游戏盈利能力最基础的2个指标;
国内做游戏数据分析的时候 ARPPU 和 ARPU 经常被混在一起,这里为了严谨,单独把这2个指标拿出来对比一下;
ARPU(Average Revenue Per User) 平均每用户收入
定义:统计周期内,活跃用户对游戏产生的平均收入;
公式: ARPU = Revenue / AU
ARPPU (Average Revenue Per Paying User) 平均每付费用户收入
定义:统计周期内,付费用户对游戏产生的平均收入;
公式:ARPPU = Revenue / APA
PUR(Pay User Rate)付费比率
定义:统计周期内,付费账号数占活跃账号数的比例;一般以自然月或自然周为单位进行统计;
公式:PUR = APA / AU;
APA(Active Payment Account)活跃付费账号数
定义:统计周期内,成功付费的账号数(排重统计);
公式:APA = AU * PUR;
拓展应用:
从公式的推导可以看出,实际上 ARPU = ARPPU * PUR;目前国内游戏数据做数据分析时所说的“ARPU”实际上是ARPPU,即平均每付费用户收入;
之所以将 ARPU 再拆解为 PUR 和 ARPPU,主要是因为 ARPU是对产品盈利能力的综合评价,为了更好的我们做决策,将付费指标拆解为 PUR(广度,更多的人付费) 和 ARPPU(深度,付更多的钱) 两个维度;
基于上诉原则,在做充值相关分析的时候,还可以对PUR 和 ARPPU 做进一步拆解,比如新老用户的 PUR 和 ARPPU,对 APA 的付费强度(统计周期内充值金额)进行分段统计,观察APA的结构,如大R占比,贡献率、小额充值的比重等;
在移动游戏数据分析领域,特别是渠道商在判断产品质量的时候,大家还会经常听到一个指标 LTV
LTV(Lift Time Value)生命周期价值
定义:平均一个账号在其生命周期内(第一次登录游戏到最后一次登录游戏),为该游戏创造的收入总计;
公式:LTV_N = 统计周期内,一批新增用户在其首次登入后N天内产生的累计充值 / NU(New Users);
应用场景:手机游戏数据分析中的发行指标,用于衡量渠道导入用户的回本周期,LTV_N>CPA(登录)
从LTV的定义上可以看出,CP可以通过不同渠道导入用户的LTV_N 与 导入成本(CPL)进行比较,用于计算不同媒体投放的回本率(这个在市场推广篇已经提到);另外,渠道商也可以通过这个指标和联运资源的成本对比,迅速判断一款产品是否值得投入联运资源;
由于LTV是基于新增用户进行计算的,因此受大R影响比较严重。
因此,在观察产品LTV数据的时候,通常情况下会选取一段时间的数据进行观察;在汇总计算时,如下图所示,计算LTV_N 时只抽取时间跨度足够的样本;
如,统计周期选择 4-10至4-19,LTV_4 仅通过 4-10 至 4-16的数据进行计算,因为 4-17至4-19 三天的新增账号还没有第4天的数据;
另外,由于受每日新增用户的质量影响较大,有可能出现LTV_N+1 小于 LTV_N的情况,因此要观察 LTV_N时,统计周期至少选择 N +14 天以上,保证每个指标都有14天以上的样本进行计算;
本文提及的收入指标主要是用于描述产品宏观数据,关于结合游戏内的其他数据做分析(包括IB分析、消费分析、首充分析等)以帮助我们制定相应的运营活动和版本计划,这部分会在 进阶篇 的案例中详细说明.(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20