京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析让个性化的客户体验不再遥远_数据分析师考试
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实时反应,使客户感受到个体价值,企业只能通过高级分析来实现。
大数据为实现基于顾客个性的交互提供了可能,通过理解他们的态度,并对其他一些因素(如实时位置)进行分析以帮助实现多渠道服务环境中的个性化。
考虑个体行为
Aphrodite Brinsmead是分析公司Ovum的客户关系高级分析师,她认为个性化和分析密不可分,并且在开发多渠道战略时,企业需要考虑顾客的个体特性和行为。
他们应当回顾目前的行为,全网不同渠道的使用和用户在不同渠道中的共同需求。在决定如何加入新渠道或连接新数据之前,了解趋势是必不可少的。然后企业应该关注如何为顾客节省时间和精力,提高一次接触解决率。他们应当努力在顾客转换渠道的时候保留环境,使用分析法,将相关数据推送给顾客和代理商。
英国三大零售商之一乐购(Tesco)使用了Oracle的一套技术,包括它的客户体验产品,使公司成为了多渠道零售商。
找到顾客参与的偏好实践和方式时个性化的关键,而数据分析就能够解锁这项技能并节省成本。Gartner表示,在各个渠道,包括网站,移动应用或客户参与中心交互,都要有环境相关的知识。
根据Gartner,向雇员提供环境知识能够减少供应商提供回答的时间,这样能够提高能力和满意度。它也符合经济利益,因为每一个准确的知识管理规则到位,公司就能减少25%甚至更多的客户支持费用。
要注意将内容与客户数据连接的方式,根据客户偏好,客户服务才能收到个性化信息。通过一般顾客历程的信息和支持性问题,企业就能预测客户的需求。
将客户作为个体来了解,让他们感受极致流畅的历程,是提供良好客户体验的关键,Jamie Turner说道,他是Postcode Anywhere的地址管理首席技术官。他认为个性化客户服务对于在数字经济中的生存是必不可少的。
“服务就像保险一样——当你需要它的时候,就已经十万火急了。它不应当耗人心力,也不应复杂,而应该是一个无摩擦、无痛的过程。那些了解到这一点的企业就能够长期存活。网上的忠诚度很低,所以你需要努力奋斗才能保住消费者。太多的企业现在还在专注于开拓新顾客,而忽视了已有客户的情绪。”Turner说道。
在数据分析上的投资
然而,没有分析上的投资,要实现有效的客户服务或体验个性化也不简单。这是大家都想要的,但也很难做好。我们都喜欢那种知道自己习惯的酒吧,那个无需动嘴就知道你想要什么的角落商店。这就是个性化,但这很难实现规模化。
根据Turner的说法,好的分析能够帮助企业变得更为主动,而无需根据顾客的期待做出反应。这对于我们来说非常重要,我们构建了一套技术来帮助我们理解和预测我们客户的‘感受’。这样我们就可能占得先机,走到顾客前面去。
他认为要开发能够知悉客户个体喜好与厌恶的更加智能的服务,大数据的角色非常重要:“大数据绝对是关键。它对于不同的人来说有着不同的意义,但是对于我来说大数据更像一种方法。它实质上就是要收集尽量多的数据,然后用机器学习这样的技术来从噪音中筛选出重要的部分。而挑战之一就在于实现实时反应,或者实时采取理想化的行动。”
他表示依赖通过大批量处理数据的出的洞察,这种一产生就已经过了有效期的“洞察”,早已不能满足需求。
“人何以提供最好的服务?都是因为他们在不知不觉中处理了从行为中得到的大量暗示,并作出如何反应的即时判断。将这一道理应用到技术上,能够帮助我们提供真正自然和热心支持的个性化服务,同时还能满足顾客的需求。”Turner说道
尊重客户的隐私
但是,数据越大,责任就越大。Ovum的Brinsmead认为最好的实践意味着,分析但不入侵。 “要谨慎使用客户数据推送产品和促销,否则就会容易失去客户的信任。”她说。
Brinsmead认为,企业使用数据要明智,并且不断创新,通过将全网站、社交渠道,社区型信息,移动应用和自动聊天等整合信息。客户不想离开移动应用去社区或者聊天室取得技术帮助。
理解客户在历程的不同阶段选择的交互方式也是很重要的,这很简单就能实现。需要在线支持来回答的问题都会是包含私人信息,并且复杂或紧急的需求。企业应当知道什么时候交互需要在线服务,并为客户实现迅速连接。企业应当提前将顾客的网页历史或之前的问题这种环境提供给在线服务人员。
Brian Manusama是Gartner的一个调研主管,他表示使用大数据实现客户服务的企业能够为提供丰富、分析性、个性化的客户服务,从而提高客户满意率。因此,这些企业通过可预测分析就能实现收益的增长,有利于企业的发展。在问题升级前避免问题,是减少支持费用和留住客户的最明智方式。
“通过分析,企业能够更好的理解客户遇到的服务问题,做出行动来避免问题的发生,并在客户向客户服务求助之前解决问题。”Manusama表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22