京公网安备 11010802034615号
经营许可证编号:京B2-20210330
8个典型案例看懂零售巨头的“大数据”战略_数据分析师考试
未来的零售分析要求零售商借助集成式业务流程和信息系统,为客户洞察提供支持,将客户洞察发展成一种企业级的战略能力,并根植于企业结构和企业文化中。在这种形势下,零售商的所有业务职能部门在制定决策时,将把基于情景的客户洞察作为一个重要依据。
分析公司 EKN 认为,为了真正实现以客户为中心,零售商需要具备多项关键能力,而这些能力均由业务分析驱动。
全渠道集成。如果缺乏相关客户洞察支持与客户的互动,零售商将无法实现跨渠道无缝客户体验。零售商与客户互动的联络点能为零售商提供丰富的客户数据,因此,所有联络点也成为了零售商的最佳竞争利器。
个性化互动。与网上零售商相比,实体零售商具有两大优势:能与客户进行个人接触,以及拥有更丰富的历史记录和更多样的客户数据。如今,“个性化”购物体验已成为人们津津乐道的话题,而如何巧妙地结合上述两大优势,即在行动中及时交付客户洞察,将成为零售商打造“个性化”购物体验的基础。
持续的卓越运营。客户洞察的应用并非仅局限于面向客户的使用案例。事实上,如果零售商已经能够在各个运营职能部门中更成熟地运用分析功能,那么集成客户洞察便是他们不容错过的增量机会。
零售商用例
销售
瑞士零售商 Globus 使用大数据内存计算和高级分析来获取宝贵的销售绩效洞察。目前,他们能够实时处理海量的产品数据,并在几分钟内分析不同时间范围、店铺和区域内数千种产品的销售模式与促销活动。该零售商还向其管理人员提供了这些洞察的访问权限,以便他们能够更迅速地响应市场状况。
美国零售商 Guess 使用高级分析向其高管提供畅销产品和可用库存的实时视图。该零售商的分析解决方案基于大型客户数据集,分析销售额、细分目标客户,并策划促销活动。
市场营销
沃尔玛的 Global.com 部门充分利用“快速的大数据”和社交分析,快速识别不断变化的客户喜好。该零售商的社交意识(Social Sense)项目能通过社交媒体确定商品的畅销程度,并帮助顾客发掘潜在需求和感兴趣的新产品。同时,借助 ShoppyCat 工具,他们可根据 Facebook 用户的爱好和兴趣,为这些用户推荐适合的产品。此外,Global.com 还使用社交基因组(Social Genome)技术,来帮助客户为朋友挑选礼物。
塔吉特(Target)百货公司利用预测分析程序,来推断个体消费者是否具备成为该公司特定营销活动优质客户的特质。他们给每位顾客分配了一个独一无二的客户识别号码。该号码将客户个人信息、购物行为和喜好整合到一个可跟踪的实体内。塔吉特还专门成立了一个客户营销分析部门,致力于全面了解客户,超越其他竞争对手,从而获得竞争优势。借助动态数据仓库(Active Data Warehouse),塔吉特可在整个企业的混合工作负载环境下,基于海量数据管理复杂的用户查询。
全渠道
英国零售商巴宝莉(Burberry)集成了旗下所有渠道,包括实体店、网上商店、移动终端以及各大社交网站。他们采用了创新技术和数据分析,用于分析来自所有数据源的数据,旨在实时识别个人客户并建立客户档案。相比过去,巴宝莉的分析速度提高了 14,000 倍,以前需要 5 个小时的请求,现在 1 秒就能完成。不论店员处于什么位置,他们都能在客户踏入店内时立即识别客户信息,了解他们过去的购买记录,并提供个性化建议。
韩国零售商 NS Shopping 将移动渠道和社交渠道集成到零售环境中,并利用大数据分析,实时、集中地获取所有渠道的客户和产品数据。而公司的电子商务团队和市场营销团队将利用这些数据,向顾客提供个性化的产品建议。
供应链
美国网上零售商亚马逊基于非平稳随机模型,构建了全新的供应链流程和系统。该方法能为订单履行、寻源、产能和库存决策提供鼎力支持。亚马逊不仅开发了联合和协调补货的新算法,还基于历史需求、活动记录和计划、各履行中心的预测结果、库存计划、采购周期以及采购订单,在 SKU 级别实施了全新的国家预测方案。
英国零售商乐购(Tesco)采用先进的建模工具,基于历史销售数据模拟配送仓库的运作,从而达到优化库存的目的。该零售商还组建了一个内部分析团队,该团队主要负责通过回归测试掌握各要素之间的关联,如天气数据、特价优惠,及销售模式等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31