
“辛普森悖论”(Simpson’s paradox)指的是在人们尝试探究两种变量是否具有相关性的研究中,在某些前提下有时会产生的一种现象。也就是说,该理论认为在分组比较中都占优势的一方,会在总评中反而是失势的一方。辛普森悖论主要是由于一些所谓“复杂变量”的影响,其弊端是没有对各个元素进行细化分析。
比如说,如果一个移动应用的用户组成是1万人用Android设备、5000人使用iOS设备,那么整体的付费转化率应该是5%,其中iOS设备的转化率为4%,而Android设备则是5.5%。如果在同等货币化效率的前提下,(也就是说Android用户和iOS用户消费一样多),一个资源渠道有限的产品经理就可能会根据这个数据做出很夸张的决定,或许会有限选择Android平台研发,甚至会取消iOS研发。
然而,当把这个数据分开来看,就会出现不同的结果:
我们都知道iOS平板的付费转化率比Android平板高出很多,而且iOS智能机的转化率也相对更好。了解了这些,产品经理或许会对未来的产品决策进行重新衡量。这种情况下,设备类型就是复杂变量:如果数据是根据设备类型得到,那么其他的数据就可能被完全忽略。在具体设备方面,iOS的付费转化率可以完全击败Android,但在整体上却低于Android的主要原因是,两个平台的设备类型表现不同:平板的转化率高于智能机,总体上来讲,iOS设备的转化率低于Android总体设备的转化率,尽管Android平板的转化率更低。
iOS和Android整体付费转化率(上)和具体设备转换率(下)比较的结果差异
造成这样差别的原因如下:http://cda.pinggu.org/
用户量:免费产品需要很大的用户量才能获得足够的总收入,因为该模式的转化率极低。而这些用户通常来自全球各个地区,使用各种不同类型的设备。针对不同的设备类型采用通用的平均值是没有意义的。
LTV范围:免费产品需要很长的货币化周期,把用户消费当作玩家是否开心的依据,就像参与度和消费紧密相关一样,因此可以作为分类的标准。
大多数的用户是不会付费的。免费产品的综合付费转化率比较低是因为把付费玩家和非付费玩家综合到了一起,所以任何对免费用户的衡量都是非常低的。因为大多数的用户是不付费的,所以ARPU以及ARPPU相差很多。
避免辛普森悖论的关键是要对反映两种不同用户之间的事实进行参考。用户划分在数据分析中是非常重要的,尤其是在免费产品当中,平均用户不仅不存在,而且是误导研发的因素之一。在一个具体的产品中,普世型的数据是没有多大参考意义的。
但用户分类并不只是在考虑产品研发路线的时候重要,如果一个游戏功能优先考虑最有价值和参与度最高当用户,因此这样的结论不仅是错误的,还会带来很多错误的用户。因此在产品做决策的时候需要考虑以下几点:定位(国家和地区);设备(平台、设备类型);获取渠道;用户早期行为(比如货币化或者参与度数据);进入游戏时间(控制季节性因素)。对于一些获取渠道来说,比如Facebook,其他数据也可以进行参考,比如年龄、性别等等。
和简单的把iOS与Android的比较数据相比,参考了这些因素的数据分析更加可靠。根本上来说,数据分析是为了提高用户使用的产品,如果分析采取的数据是错误的,那么真正的用户群是不会买账的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18