京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据帮你洗脑:你是如何混淆因果关系的
这是一个人人都谈大数据的时代,不过数据真的是有益的吗?其实不一定,数据经常也会忽悠人。
请一句话评价下列事件(假设数据是真实的):
研究发现,越是成功人士,睡眠时间越短。
研究发现,女人结婚后变得更加贫穷,男人结婚后变得更加富有。
研究发现,越富有的人越幸福。
研究发现,儿童时期吃西兰花越多,成年后往往职业收入越多。
研究发现,去医院越多,越容易生病。
过去20多年跟踪研究发现,中国GDP越高,90后一代身高越高。
……
根据本人潜水博客论坛观察总结,大部分人的评价是这样的(至少前3个事件的评价是这样):
1,研究发现,越是成功人士,睡眠时间越短。
这么说,我要是不睡觉,是不是薪水就上亿了?
2,研究发现,女人结婚后变得更加贫穷,男人结婚后变得更加富有。
看来还是女人对婚姻牺牲大啊!结婚导致女人收入变低,却增加了男人收入。
3,研究发现,越富有的人越幸福。
屌丝们洗洗睡吧,你幻想的穷开心是不现实的。
4,研究发现,儿童时期吃西兰花越多,成年后往往职业收入越多。
我勒个去,都怪我小时候西兰花吃少了,大白菜吃多了!
5,研究发现,去医院越多,越容易生病。
唉,以后生病还是别去医院了。
6,过去20多年跟踪研究发现,中国GDP越高,90后一代身高越高。
哇!原来提高GDP还有这好处!不过,如果将来中国GDP下降,下一代怎么办?
等等,貌似这上面的逻辑有点问题吧?
实际上,上面的每一个推理都有严重的逻辑错误,都是错把相关关系当做了因果关系:
A越多,B越多,这是相关关系。
A越多,导致B越多,这是因果关系。
而如果没有进一步的调查和理论,相关关系是推理不出因果关系的。
为什么?
请看下面这个“脑筋急转弯”:
猜猜,下图的鸡和蛋是什么关系?
直觉:母鸡刚刚下了蛋。
第二直觉:还有可能是这个母鸡是由这个鸡蛋孵化出来的。
其实,它们有4种可能的关系:
同样,两个“A越多,B越多”这样的相关性实际上有4种可能(以收入和睡眠的为例):
A导致B:更少睡眠导致收入增加。
B导致A:收入增加导致睡眠减少。
A和B同时被C导致:随着年龄的增长,人对睡眠要求减少,因此睡眠少。同时年龄大的人,往往经验、人脉、知识更多,也自然收入更多。
A和B没有任何关系: 美国、西欧等经济发达,导致人们收入高;同时他们爱吃牛排,导致睡眠需求减少。(数据仅为举例,不代表真有这样的关系。)
所以,当你看到“睡眠越少,收入越多”这样的统计结果后,不要天真地认为只要你减少睡眠,你也能收入变高。
当然生活中的确有人是这么做的:
我认识一个人,看到了这样一个微博上流行的统计结果后,为了获得成功而刻意减少睡眠。
甚至,当他凌晨2点还在玩DOTA时,你过去问他:“你怎么还不睡?”他的回答是:“睡眠越少,将来越成功!为了赚大钱,我先从减少睡眠开始。而在这漆黑的夜里,只有DOTA能让我清醒。”
所以,假设“成功导致睡眠少”而不是“睡眠少导致成功”,你是无法通过减少睡眠而变得更加成功的。就像白种人喜欢吃牛排,但是你无法通过吃牛排变得更白。
除了“成功VS睡眠”之外,其实上面每个新闻都有类似的逻辑错误:
研究发现,女人结婚后变得更加贫穷,男人结婚后变得更加富有。
这个数据其实无法推测出结婚让女人变穷男人变富,还有可能是:预期自己将来没什么钱赚的女人更想赶紧把自己嫁出去,而预期将来能赚很多钱的男人倾向于赶紧找个老婆。
当然,还有可能是其他原因甚至是完全无关的因素造成了这个相关关系。
研究发现,越富有的人越幸福。
通过这个数据并不能推测出你赚钱后就能变得更加富有。
实际上研究证明,当金钱超过个人基本需求之后(比如已经吃饱穿暖),对长期幸福感没有显著影响。
比如中了巨额彩票的人得到的幸福感只是短期的(类似吸毒产生的幸福感),调查发现,中彩票后6个月,即使你变得比之前富有上百倍,但是你的幸福感指数还是维持在6个月前水平。
(此研究详细请看哈佛大学公开课《幸福课》,by Tal-Ben Sharhar)
那么为什么我们发现富有的人往往很幸福呢?
其实这是因为富有和长期幸福都由类似的因素导致:自信、热忱、勤奋等。所以,你的自信、热忱、勤奋等情商特征有2个产物:
能够提升你长期幸福感,让你觉得生活更加有意义
能够让你赚钱升职。但这不代表赚钱本身可以提高长期幸福感。
所以,“穷开心”还是存在的。
研究发现,儿童时期吃西兰花越多,成年后往往职业收入越多。
这个新闻是我YY的,但是这句话绝对的正确的!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21