
大数据之后,谁将为时代冠名_数据分析师考试
在一次互联网思维的学习讨论会上,大家当然讨论了大数据时代和大数据的思维,当然,大数据思维是互联网思维的特点之一。
“您每天敲击一次键盘,都会成为这个时代的大数据的一部分”。
这是“中国之声”的广告词。
“大数据”因互联网而成为这个时代的一个显著特征,并成功的赢取了时代金矿的美誉。数据的价值得到空前的重视,“谁掌握了数据,谁就掌握了未来”。“数据是重要的资产”。“数据只有开放互联才能成为大数据,才能发掘出价值”。当人们津津乐道大数据是如何成为时代的新宠时,似乎各行各业都离不开大数据了。
而事实上,大数据给我们到底带来了什么呢?我们究竟在大数据上获得了哪些利益呢?未来又能获得什么利益呢?尽管全球的IT精英都在绞尽脑汁的发掘和鼓吹大数据的价值,乃至国家政策也受此影响。但如果对上述问题没有得到清晰的答案,这样的影响多少存在逻辑上的盲目。
理智地思考:大数据为何产生?
因为有了计算机,才有数据。数据是计算机的食物和产物。
因为计算机爆发式的增长,导致作为其食物和产物的数据爆发式增长。
计算机的联网,自然带来其食物和产物的相互纠连。
计算机为什么要吃进数据和吐出数据?因为数据里面有我们人类需要的信息。
数据的纠连,背后是信息的关联。
即使在没有计算机的年代,信息的关联原本就存在,构成我们人类的信息世界。
那时的信息世界虽然运行缓慢,相互阻隔比较严重,但至少是清澈见底,让我们气定神闲的。
计算机在信息世界的出现,相当于蒸汽机在工业世界中的出现。
工业革命带来的是什么?产品生产效率的大幅提高和自然资源的快速消耗及生态环境的剧烈破坏,当然,还有科技的进步。
那么,信息革命带来的是?信息处理效率和范围不断提升和数据的快速膨胀,有谁想到过,和工业革命之对生态环境的剧烈破坏,信息革命对应的影响是什么?如果是破坏,破坏了什么?如果我们想都没想到过这个破坏确实可能存在,如果实际是存在的,会意味着什么?意味着人类在未觉醒的状态下,在拼命发展着一种对自己的某个世界可能带来巨大影响的技术。不像工业革命带来对自然环境的污染和破坏可以让人类直接得到相应的惩罚而觉醒。信息革命如果能带来破坏,则一定是对人类信息世界的生态环境的剧烈破坏。
信息革命可能如何来破坏人类信息世界的生态环境的呢?
在原来人类的信息世界的生态环境中,虽数据量不大,但数据的信息密度大。虽数据复制传输慢,但垃圾数据少。自从有了计算机,特别是有了互联网,数据对信息的吞噬是极其野蛮和不受约束的。数据量是很大,数据的类也很多,关联的范围也很广,但信息的密度却急剧下降。由于数据的传输和复制的速度急速提高,垃圾数据更是野蛮生长不受控制。这便是对大数据的来由的另一种看法。
确实,大数据的产生,给我们带来了在前所未有的宏观层次得到数据证实的信息,但是,这些信息,实际和人类凭直觉得到的信息也无太多的差别。相反,庞大的数据支撑下的“数据说话”的思维,让人类越来越丧失了宏观的直觉和思考的能力。
所以,大数据时代,实际是个什么时代?对这点的清醒认知,对把控人类技术发展的下一个时代确实非常重要。倘若迷糊,下一个时代是“大失控”时代,就不仅仅是科技作品中的预言了。
倘若我们清醒过来,认识到大数据的危害,我们则可能利用大数据技术升级,反过来治理大数据的危害,正象我们在后工业革命时期所做的那样,环保和生态事业在新的技术支撑下,得以发展。
倘若我们做到了后者,那么,大数据时代的下一个时代,必然是个“大整合”的时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04