
首只大数据券商基金出炉_数据分析师考试
业内首只大数据券商基金即将面世,东方证券资产管理有限公司7月8日公告称,东方红京东大数据灵活配置混合型证券投资基金将于7月13日起发售,认购金额起点10元。据悉,该基金为业内首只大数据券商基金,将管理人在大消费领域的主动性研究,与京东真实及时的大数据结合起来,致力于寻找消费领域的ALPHA。
首只大数据券商基金即将面世
公告显示,东方红京东大数据混合基金为一只灵活配置的混合型基金,采取主动管理的投资模式,将根据管理人的大数据分析模型,进行行业配置和个股选择,力求为基金份额持有人获取超过业绩比较基准的收益。
在投资策略上,管理人先根据宏观分析和市场判断确定大类资产的配置,然后充分利用公司大数据研究平台的优势,通过对京东大数据的分析研究,挖掘出不同行业的敏感因子,提取合成不同行业的观察指标,结合管理人的线下研究进行行业配置和个券选择,构建合理的投资组合。
在行业配置上,该基金将结合线下实地调研和线上大数据挖掘研究进行行业配置。管理人通过线下调研进行行业竞争要素分析和定性判断,通过线上大数据进行行业趋势的挖掘和跟踪,结合线上和线下的分析,判断细分行业的供需情况、价格走势和消费者倾向等关键要素,从而确定各细分行业所处的发展阶段、竞争趋势、景气程度和发展空间等,找出成长性好,盈利空间大,处于上升趋势的行业进行重点投资。
分析人士指出,该基金将大数据直接运用到投资选股领域,对传统的投资决策模式形成补充,开启大数据服务投资研究新模式,互联网与金融进行更深层的融合。通过线上和线下相结合的分析也可以对拐点型行业做出较早的预判,提前做出布局,在行业配置上占据主动优势。
大数据与投资决策深度融合
大数据如何运用到投资决策?据悉,东方红京东大数据混合基金将利用管理人的大数据研究平台,对海量数据进行分析研究,选择重点行业,并结合上市公司的管理水平、盈利模式等基本面研究遴选优质投资标的。
具体而言,东方红资产管理向京东提供数据发掘的模型和结构,并负责检验模型的有效性,而京东定期根据模型提供持续数据更新,具体包括京东电商的销量、浏览量、点击量、客户评价、客户收藏量等基础数据,以及价格趋势和斜率、销量趋势和斜率、地域分布、人群特点等。
该基金将运用京东大数据,对上市公司所属细分行业的数据进行挖掘和分析,从而判断行业的趋势、斜率、空间等,结合上市公司在行业中的地位,对公司的短、中、长期趋势做出判断。同时,研究公司所处行业中各种不同商业模式的竞争和演化,分析公司的核心商业模式,及该商业模式的稳定性和可持续性。
分析人士指出,此次是京东大数据首次挖掘并提供给机构投资者,蕴含大量的未被开采的投资金矿。大数据将成为投资研究的有效补充,借助大数据样本大、误差小的优势,及时、客观、真实的特点,投资决策更加主动、更加有效。尤其是京东电商的全样本、实时大数据能更直观、实时地反映各个行业的变化,将显著提升投资决策的前瞻性。
资料显示,2014年京东的销售额为人民币2602亿元,较上年增长了107%;2014年全年完成订单6.9亿个;活跃用户数超过1亿。京东电商所涵盖的品类包括3C、家电、家居、纺织服装、食品饮料、化妆品、鞋包、户外用品、母婴玩具、营养保健、音像制品等,是国内品类最全的电商网站之一。
大消费板块更具长跑实力
“从全球市场经验来看,大消费板块更具长跑实力,能够大概率穿越牛熊市,带给投资者长期投资回报。从目前市场估值来看,消费板块的估值也更具安全边际。”东方红京东大数据混合拟任基金经理杨达治表示。
而从A股近十年历史来看,医药生物、食品饮料、电子等行业是诞生10倍牛股最集中的行业,随着中国经济发展、居民生活水平提高,对大消费领域相关产品的需求大大提升,消费行业的优势企业容易成为快速增长的公司。
资料显示,基金管理人东方证券资产管理有限公司为首家获得公募基金管理业务资格的券商资产管理公司,投资管理团队自1998年成立以来,经历多轮牛熊市考验,积累了丰富投资管理经验。
杨达治为东方证券资产管理有限公司董事总经理、权益研究部总监兼公募权益投资部总监、资深投资经理,北京大学光华管理学院硕士,证券从业13年,善于从行业演进、商业模式等方面深入挖掘上市公司投资价值,拥有丰富的证券投资经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29