
大数据落地进行时 从概念化走向价值化_数据分析师考试
过去几年大数据技术很火,经历几年时间的“酝酿”,我们可以看到今天的大数据已经从过去概念阶段逐步走向落地——众多的行业企业开始意识并且开始尝试大数据技术,但是实际上现在的大数据应用还存在争议有观点认为大数据虽然很火但它的实际运用、价值创造方面还有待于观察和发掘。那么,经历几年时间的发展大数据如今的现状究竟是怎样的?在近日召开的2015 SAS中国用户大会暨商业分析领袖峰会(以下简称峰会)上IT168记者有幸采访了SAS公司执行副总裁兼首席营销官Jim Davis、SAS公司大中华区总裁吴辅世、广发银行信用卡中心首席风险官王玉海等行业服务商以及用户听一听他们是如何看待大数据的价值、落地、应用现状的。
服务商、行业用户眼中的大数据
提到大数据,业界有观点称大数据现状是“关注的比投资的多、投资的比做得多、做的比懂得多、真正的懂得人比较少,懂得比赚的多”。在这样的一个现状下,作为大数据服务商如何来看待?对于此,SAS公司执行副总裁兼首席营销官Jim Davis认为,大数据已经开始应用,利用数据可以为企业带来非常大好的好处,企业应该把数据视为一个重要的企业资产跟企业的人员、人才、客户和设备都一样重要,它不仅仅是一个副产品应该高度重视这样的数据资产。现在处于我们处于数据爆炸的时代,各个行业企业以及机构没有选择,必须通过数据做出决定支持自身发展。
SAS公司大中华区总裁吴辅世认为,大数据走到落地实践阶段是必然的趋势,虽然全球都在萌芽阶段,但是发展是很正面积极。从技术层面来看,技术正在越来越成熟比如Hadoop存储过去只是概念而现在已经应用于很多的领域。所以,大数据落地在一步步的往前发展是正面的积极发展。
作为服务商对于大数据的看法是大数据正在逐步发展、积极落地,那么从行业用户的角度来看,他们又是如何来看待大数据的?对于此,广发银行信用卡中心首席风险官王玉海对于大数据持有不同的态度,他认为大数据在不同的行业应用不同但在金融行业大数据呈现“雷声大雨点小,有客观原因也有主观原因”。主观上金融业的企业文化没有改变过来,用产业兴衰的所谓的基因论来衡量,当上一波的产业浪潮获胜者巩固以后,不断地固化他的企业文化、思维模式、运营架构,这些基因不代表在下一波产业浪潮中能获胜,所以很多银行是安于现有组织架构和组织流程,对那些新生的创新性的事物有一个文化上天然的排斥感,所以,当我们说金融业应用大数据应该是最好的领域时,其实金融行业的小数据还没用好,文化上有一个不接受的排斥。
在成本和管理因素方面,不管从人力还是硬件,从数据结构还是数据源还都是传统意义上的这种模式。尤其是大数据要基于生命周期的数据管理方式,其实在目前金融业还是割裂的,碎片化的管理。尤其传统分析方法已经不适合大数据碎片式、非结构性的数据,像影像、图片、音频等非常好,但是一旦接触它很棘手,怎么样把非结构性的传统方法用于大数据管理?实际上从软件、硬件、基础设施上来看都没有完全成熟,成本更高了。现在传统银行每一个部门有它的成本控制,他不敢去冒险投入很多的财力、人力来开发而不能肯定它的回报,这是管理和成本的制约。
在技术方面,传统的数据库都是事物型的而不是分析型的数据库,IT人员习惯于从原数据抓过来,从文本文件变成一个数据仓库,但是分析是另外一个事情,他把分析和仓库割裂起来,由于技术原因和过去的管理机构,需要更大的储存和更强的技术能力,也就是云计算和Hadoop。
在人才方面也是一大挑战。大数据应用不仅仅是需要一些计算机行业的、数学行业的人才,它更需要的是对传统的金融领域和未来发展更了解、更熟悉,同时又有能力作数据搭建储存和分析,这些人才目前在市面上是非常稀缺,虽然每年大量的学统计和金融的大学生,但是他们是割裂的很多人是偏才,所以现在对银行来言,可以轻易给这些有这种能力的员工一百万到两百万的工资,但是仍然不好找。
大数据如何落地?
来自服务商、行业用户对于大数据的现状分析以后,我们可以看出大数据已经从概念开始逐步走向落地应用阶段,那么,对于行业的企业而言该如何借助大数据创造价值?对于此,Jim Davis指出,大数据带给企业的好处要满足四个条件:第一,基础设施;第二,相关人员或者人才,他们需要来理解并且帮助机构以及企业根据事实做出决策,他们需要具备相关的技能来进行数据和分析;第三,相关过程;第三,强有力的文化,在这个文化中愿意变革现在数据和分析不是可有可无的选择,任何企业和机构如果想要继续在前行道路上取得成功必须拥抱数据和数据分析。
王玉海指出,大数据应用的挑战并不等于悲观,虽然金融业应用大数据存在阻力和挑战,但是应用逐渐大数据化是需要一个过程。
SAS推动行业大数据落地
在推进行业企业大数据落的地进程过程中,作为领先的大数据服务商——SAS能够为行业企业提供什么样的服务或者产品支撑?吴辅世指出,过去几年 SAS为中国行业企业提供了优质的产品以及服务为助力大数据落地,比如我们的联想、华为等。正是借助SAS的大数据优质的产品,SAS中国成为在亚太区是以成长速度最快的国家和市场,目前,SAS重点服务四大行业领域的企业:第一,金融服务银行、保险企业;第二,制造业;第三,政府市场;第四,电信市场,除此之外未来在中国市场上SAS还要继续推广发展如医疗等行业,加速大数据落地步伐,促进企业健康成长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29