
政府部门如何拥抱大数据?专家:众包强化监管能力
在全社会信息量爆炸式增长的背景下,政府部门该如何拥抱大数据?专家建议,一方面要加强与大数据分析企业、互联网公司的合作,获取更丰富的数据,另一方面要开放一些政府数据给企业,发挥企业的智力资源与技术实力,为政府提供决策支撑—
国办近日印发《关于运用大数据加强对市场主体服务和监管的若干意见》,提出充分运用大数据先进理念、技术和资源,加强对市场主体的服务和监管,推进简政放权和政府职能转变,提高政府治理能力。
“这是适应时代需求的必然选择,是智慧城市建设的重要切入点。”中国电子信息产业发展研究院信息化研究中心副主任潘文接受《经济日报》记者采访时表示,公共信息资源中蕴含的经济潜力是惊人的,用好大数据,能有效提高公共决策的质量和效率,并顺应“大众创业、万众创新”的潮流需要。
蕴含巨大经济潜力
在信息社会,随着大数据、云计算、移动互联网等新技术及相关的创新应用不断加快,海量数据正在政务管理、产业发展、城市治理、民生服务等众多领域不断产生、积累,数据资源也和土地、劳动力、资本等生产要素一样,成为促进经济增长的基本要素。
近年来,我国大数据产业规模迅速增长。赛迪顾问的统计数据显示,2014年,中国大数据IT市场规模达到93.1亿元,增长率为37.3%。预计2015年至2017年,中国大数据IT市场年复合增长率有望达到33.3%。
大数据为何能蕴含如此大的经济潜力?“因为数据的体量越来越大、来源越来越广泛、内容越来越丰富,可以从更多维度全面还原市场,让政府对市场有更加准确的把握,进而帮助政府提高服务与监管的水平。”赛迪顾问电子信息产业研究中心高级分析师张梓钧说。
“从广义上看,我国大数据产业或已超过1000亿元,大数据企业群体正在快速兴起。”中关村大数据产业联盟副秘书长陈新河表示,大数据思维和应用已逐渐渗透到公共管理和政府治理范畴内,对于推进政府治理从粗放化向精细化、从被动响应向主动预见、从个人经验判断向数据科学决策、从行政主导型政府向以人为本的服务型政府转型都有重要作用。
开放提升服务水平
《意见》提出运用大数据提高为市场主体服务水平。潘文对此分析说,利用大数据等现代信息技术,可以增加政府信息公开透明度、提高注册登记效率、简化项目审批程序、有效综合评估企业信用状况、进行经济运行监测预测和风险预警等等。这些进步都有利于提升政府公共服务和监管的实时性和有效性,有利于方便市场主体,提高经济社会运行效率。
“总体来说,我国政府运用大数据为市场服务还在初期探索阶段。”张梓钧建议,一方面要加强与大数据分析企业、互联网公司的合作,获取更丰富的数据,另一方面要开放一些政府数据给企业,发挥企业的智力资源与技术实力,为政府提供决策支撑。
近年来,互联网的高速发展带来了数据爆炸式增长,数据已成为企业未来新战略发展的中心。百度、阿里巴巴、腾讯等互联网企业分别通过搜索、产业链、用户掌握着数据流量入口,已在多个领域尝试对掌握的数据进行利用,体系和工具日趋成熟。浪潮、曙光等IT企业则把重心转向数据服务,并和政府有了多项成功合作。
“开放数据,是政府部门实现数据创新应用,服务产业、企业走向升级发展道路的重要途径。”浪潮集团董事长孙丕恕认为,当企业数据的来源不再局限于财务、税务、信贷、保险、信用历史等传统领域和组织内数据,还扩展到产业分布、发展需求、市场现状等广泛领域,将为企业和经济发展提供全新的资源支持,激活“数据经济”的全部潜能。
众包强化监管能力
“以前对市场主体的监管靠工商、行政等机构,受困于人员、资金,很难全面到位,而大数据时代利用企业画像技术将有效提高监管能力。比如,根据网络上餐饮点评数据、微博吐槽数据、论坛热议信息等几乎可以对辖区的所有餐馆进行360度的客观评议,以众包的方式取代原来的抽检方式,大大减少漏检的可能。”陈新河说。
潘文表示,依托在日常监管所形成的庞大的企业信息数据,开展大数据监管专项研究和实践,建立科学的数据分析模型,通过对市场主体数据的综合比对、分析、监测、科学筛查,能及时发现涉嫌违法的市场主体,预警系统性、区域性的市场异常现象,实现精准打击的信息化监管模式,减少执法资源的无效投入和浪费,全面提高监管效能。
不仅如此,运用大数据进行市场监管,还能让多部门、多环节产生的数据交织融合,产生以信用为核心的新型监管机制。“但只有实现跨部门跨领域的数据共享,才能真正打造出全面可靠的信用体系。”张梓钧说。潘文也指出,要充分利用大数据监管理念及思维,加强数据整合、采集、分析、挖掘,让数据决定监管的重点,并推动跨区域跨部门之间的信息互联互通。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20