京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“将数据转化为洞察”,这是不是很容易?在大数据时代背景下,你可能会认为每个人都在做着同样的事情。如果不幸成为例外,那只能说明你已经落后于时代了。但是,对很多IT负责人来说,大数据仍然是一个全新的领域,不对其过分追求反倒可能是当下合理的选择。
关于大数据的应用在各行各业俯首皆是。比如,零售行业通过将购物偏好和位置信息相结合,为客户提供更加个性化的服务和商品;或者,制造业通过预测分析来提升运维水平。
基于飞行实时数据,发动机制造商对维护时间点和飞行性能进行评估,而后为航空公司提供创新的租赁和服务合约。
超市很早以前就通过天气预报数据来决定冰淇淋和烧烤食物的上架时间。现在,业者开始基于客户忠诚度计划搜集的购物习惯数据,决定在第二天什么时间点提供那些易腐烂的商品。
在这些案例中,无论数据是结构化还是非结构化,分析的最终目的都是相同的:提升销售或降低成本。
但是,如果不在大数据上进行投资,会发生什么情况呢?也许,你很聪明,并且已经知道该在哪里进行投资以获得竞争优势和丰厚利润;或者,机缘巧合,你的成功来自于竞争对手的失误。
如果属于第一种情况,本文对你毫无意义,你已经掌握了制胜之道。如果是第二种情况,我的建议是,继续阅读本文,思考在大数据上的投入将会给企业带来什么改变。
需要考虑的问题
下面这几个简单的问题将有助于你判断是否该在大数据上进行投资:
·基于企业现有的数据,你是否能产生出新的洞察?
·从IT的角度,结合业务数据是否能提升企业的效率?
·以一个客户的角度出发,考虑企业是否能更好地为你服务,提升你的效率,让CFO不再愁眉苦脸?
·对于同行业或者其他行业那些宣称通过大数据取得成功的企业,你是否会感到嫉妒?
如果你的同事(比如首席营销官)很快就会来问你是否具备大数据方面的能力,你会不会感到担心?如果答案是否定的,依据是什么?
对于上述问题中的任何一个,如果你的答案是肯定的,那么也许就应该考虑以下几个方面:
投资规划
挖掘大数据的应用场景与其他新技术的投资并无二致。驱动因素?风险忍受度?改变现状后的预期结果?能挖掘什么新的价值,其中有形和无形价值的比例各是多少?
以上问题中,没有任何一个是决定性的。但是所有问题放在一起,就足以形成最终的投资决策。如果事关新兴的理念,供应商和顾问们会竭力想在新领域打出名声,你可以好好利用这一点。
当新技术在各个行业分块或业务链条上的应用还不充分时,供应商和系统集成商会更愿意在商业开发上进行投入,这就为你尽可能降低成本提供了机会。
合作伙伴选择
为什么只挑选一家合作伙伴?同时引入多家合作伙伴对同一组数据进行挖掘,这在业界已经有诸多正面的案例。各家合作伙伴之间会进行真正的竞争,从自身视角出发分析数据。在这种情况下,客户通常会得到数个不同的结果,其中任何一个都可能是真正的洞察。
但是,当你期望最终获得有形价值时,要做好准备面对各种意想不到的结果。
对各类结构化数据的可视化无疑会对决策有所帮助。可视化能够让数据变得更加容易理解,提升附加价值。然而,当把同样的结构化数据与非结构化数据以及具体的上下文相结合时,真正的洞察才会产生。
要鼓励你的大数据供应商打破传统思维,向你展示之前从未想象过的结果。尽管实际工作完成之前无法预测是否能带来价值,但是这至少能让你从全新的角度去思考业务。一旦获得了新的视角,你将从此脱胎换骨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01