京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人类进入信息化时代以后,短短的数年时间,积累了大量的数据,步入了“大数据时代”,使人类以前所未有的速度、厚度、细度和准确度对信息的掌握成为可能。面对大量的数据,基于充足的数据基础,对数据进行挖掘与分析,并将其运用于企业的精细管理,也就不仅成为可能而且势在必行。
一、大数据时代需要深度挖掘与精细管理
(一)大数据时代的数据特征
牛津大学教授维克托。迈尔)舍恩伯格(Viktor Mayer-SchEnberger)在5大数据时代6中前瞻性地指出,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型,讲述了大数据时代的思维变革、商业变革和管理变革。据统计,近两年内由人类产生的数据,竟然达到了人类有史以来的全部数据的90%以上。数据量的庞大,远远超出了我们的想象;数据量的巨大增长速度,也是我们始料未及的,这就是大数据时代的最大特征。这个巨大,不仅是数据量本身极为巨大,更深层意义是,数据所含的信息量同样巨大无比。同时,这些海量的数据及信息量必然给数据处理以及分析带来极大的困难。因此,我们必须学会处理与分析海量数据的手段与方法,因为只有这样,才不会被大量数据信息弄得头昏脑胀,才能在大数据的海洋中畅游。
(二)大数据时代的数据挖掘
数据挖掘,简单来说就是对数据进行处理和分析,找到自己所需要的,扔掉自己不需要的信息。大数据时代,是一场数据上的革命时代,对人类社会生活具有颠覆性的影响。不仅如此,它还将对企业的决策、组织、业务流程等产生重要影响,甚至在某种程度上,它也能对国家的治理模式产生不可估量的影响。在大数据时代,人与人之间不再存在界限,甚至于完全模糊到没有国界与任何疆界的程度。以前的种种最为宝贵的资产变成了数据,成为大数据时代最为宝贵的财富,因此只有学会分析处理数据,才能获得这些所谓的财富。然而这些海量的“宝贵财富”就像一座藏宝山,它不在表面直接出现,而是被层层包裹着。我们必须利用我们所能想到的各种工具去寻找宝藏,而这些工具中相当重要的一种便是数据挖掘。
数据挖掘需要一个建模的过程,选取所需的大量数据,然后利用各种数理模型对这些大数据进行整理和分析,来有效地帮助企业了解不同的客户,以及它们的市场划分,并据此来了解消费者的喜好和消费者的行为方式,这便是数据挖掘的具体含义:从大数据中找出企业所需的一种方法。这些大量的数据之中必然隐藏着一种规律性的东西,要想找到这种规律,就得经过数据挖掘过程并对数据进行建模,利用所建的模型将这种关联性、规律性从数据中找出来。由此可见,数据挖掘和统计的关系十分密切,数据挖掘过程中经常会用到统计分析的一些方法,除此之外,还会利用到联机分析与处理系统、专家系统及模式识别系统等科学方法。
(三)大数据时代的精细管理
2012年《大数据时代》呱呱坠地,不到一年时间便畅销遍全球。从数据发展情形来看,工业、农业、教育和军事等多个信息化的发展过程中肯定会产生十分庞大的数据量,这便为数据精细管理提供了巨大的发展潜力。
大数据的精细管理永无止境,因为数据不断被更新,大数据的作业模型不断在改进,分析、处理和应用技术也在不断进步。就我国目前状况而言,我国存在着非常大量的数据,但是对这些数据的精细管理却十分缺少。精细管理有一个步骤是数据采集,这个过程务必须要十分详细、资料完备,只有这样,我们才能在数据中找到我们所需要的客观信息,才能更好地分析处理数据。目前,我国的大型互联网行业大都十分重视数据的采集工作,这对于未来的数据精细管理的作用至关重要,在后续的数据分析中有着举足轻重的地位。
(四)大数据时代数据挖掘与数据精细管理的意义
无论是数据挖掘,还是精细管理,在大数据时代都有着十分重要的意义,因为通过分析,我们可以提出提供决策的意见与建议,这些都是靠强大的数据支持的。目前,世界五百强企业中绝大多数在提出管理建议时,都需要大量数据为其作为理论依据。而在我国,即使是中小企业,也在分析、解决问题时开始倾向于用数据说话,如若没有大量数据,便没有理论依据,也就无法提出科学合理的建议。此外, 数据本身其实是会“说话”的,只不过这些话需要自己找出来,在对这些数据进行分析处理之后,就可能从中发现企业所需要的东西。大量的数据中其实隐藏着很多宝藏,比如客户的喜好及市场未来的可能发展趋势等,这些对于企业有极其重要的意义,只有更加了解、接近市场的企业,才能从竞争中脱颖而出。企业必须依靠大量数据的分析才能更好地为客户服务,更好地完成企业的各项工作。
二、大数据时代如何进行数据的深度挖掘
由于企业对大数据资源有开发方面的需求,于是便有了数据的深度挖掘。企业拥有大量宝贵的数据资源,它们都希望从中提炼出最有用的信息与线索。深度数据挖掘包括了准备阶段、挖掘阶段以及结果的表达和解释工作。数据挖掘的手段也有很多,诸如关联分析、分类分析、聚类分析、特异群组分析以及演变态势分析等。
根据数据中的差异性,可以很好地建立分类模型,这样做有十分明显的作用,它能够把状态细分化,实施更具有针对性的营销,找到更有价值的客户群体。可以在进行正式分类前先进行一次估计,然后根据估计结果对数据进行预分类,再进行修正直到达到更好。
对数据进行预测有着十分重要的意义,这是对数据进行深度挖掘的一个不能缺少的过程,也是对于数据挖掘更为高级的应用。预测不仅是估计大数据,更要求根据这些大数据进行准确的预判。预测要对以前做好的大数据集进行分析整理,对它所代表的现实世界进行抽象,初步得到最基本的模型,然后从信度及效度两个方面对模型进行检验,确保建立的模型的准确性。建立模型只是一个对数据进行模拟的过程,其目的是通过这一过程对未来趋势进行预测,尽量达到准确。数据本身是过去的,从这一方面来说它们只能代表过去,但是我们可以通过模型找到其产生的基本机制,使预测成为可能并有准确性。过去的数据并不只是能够表示过去,它们是十分珍贵的财富,因为从这些数据之中我们能够预测未来。预测是一个复杂的过程,据统计,目前有关预测已经存在的模型已经有了几百种,就算是最常用模型的也有好几十种,因此这个过程有待于进一步提高和改进。现实世界是复杂的,虽然说预测技术到目前有了突飞猛进的发展,但是预测只是预测,永远都替代不了现实,而且任何已经存在的模型都不一定比量身定做出来的更符合当前的业务。目前,可以运用于大部分企业应用的模型有很多种,包括多元回归、非线性回归、AR模型、MA模型等各种各样的预测模型。还有一些是专业级统计应用软件,比如矩阵实验室、SAS、SPSS、MATLAB等,这些也为深度数据挖掘提供了便利条件。
三、大数据时代数据精细管理浅析
如果说数据挖掘提高了企业的洞察力,那么大数据管理的精细程度则为企业提供了数据管理方面的保障。目前,大数据的精细管理仅限于大型企业,尤其是互联网或其他高科技企业,因为庞大的数据量在目前并不会出现于普通百姓之家,即使一些企业有数十年的数据量,也都没有达到大数据的水平。不管是以利润为中心,还是以客户为中心,大数据的精细管理都是一种推动力量,有利于推动企业的发展。大数据的精细管理为其提供了管理方面的基础,同时为差异化竞争提供了原始理论方面的强有力支撑。目前大型企业在精细管理方面存在着不少问题,正是由于这些问题的存在才导致企业主营业务缺乏方向性、针对性、导向性以及向心性等诸问题。
结束语
“大数据时代”这个概念的出现只有短短数年时间,但是这个概念已经渗透到五洲四海,与之伴随的则是大数据时代的数据挖掘与管理革命。我国的大型企业都十分重视对大量数据的获取与掌握,这充分说明,数据挖掘与精细管理在这个崭新的大数据时代中具有非同一般的重要意义。(文章来源:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20