
大数据分析现状 发展计划和面临的挑战_数据分析师考试
为分析并预测大数据技术的发展现状、发展计划和面临的挑战,IDC将于2013年秋季对德国相关应用企业进行问卷调查。
从技术角度来看,大数据包括像Hadoop、高扩展度数据库、最佳可视化工具以及高性能搜索引擎这样的新技术和已经成熟的技术,如事件驱动处理技术、商业智能技术和数据挖掘技术,这些技术主要用来处理海量的数据。
大数据技术的主要任务是从内部和外部数据源中找出所需的数据,并对这些
数据进行高效快捷的评估,最终提供决策支撑。
全球对大数据技术和服务的投资在增长
目前,大数据在美国最为发达,包括德国在内的欧洲地区在这一领域稍显落后。不过,现在业内人士已经注意到了这一趋势,各个企业中的IT部门正在感受到发展的压力。
期望和前提
数据评估和报告在大多数企业中早已不是新鲜事物,只是如今旧的数据评估和报告工具已经无法满足新的需求:现在的专业人士要求尽量实现数据实时分析,目前的基础设施、数据结构、解决工具以及商业模式根本无法保质保量地完成这个要求。
企业现在面临两个选择:对现有技术进行扩展,或者实现技术升级。大数据技术就是比较理想的新技术。
讨论热点
过去几年,大数据讨论中比较热的话题是技术问题和数据组织问题。经过几年的发展,人们对这些问题的理解有了深入发展,又开启了新的讨论话题。
现在,专业人士讨论的焦点问题是工作量优化,未来关于工作量和新的商业模式的讨论还会更多。2011年和2012年大数据的项目比较少,主要以测试安装为主。
IDC预测,今年和明年这一领域会出现大幅增长。对于企业来说,大数据技术既是挑战,也是机遇。
战略和解决方案
所以,大数据势必成为ICT(InformationCommunicationTechnology,信息通信技术)战略的一部分。数据访问和融合也变得越来越重要。
IDC认为,2013年和2014年人们关注的热点将从技术转移到信息查找和知识获取。“软件定义”(Softwaredefined)、融合技术、开源软件及平台是大数据基础设施建设中最核心的问题。其中,开源软件与平台还需要经过一个商业适应的过程。许多企业把投资重点放在机器生成数据的实时分析上,因为这可以加快企业的发展。终端用户希望解决方案可以简单易操作。要实现应用程序和移动解决方案的可视化和直观互动,就要实现大数据的“消费化”。
IDC预测,由于缺乏大数据分析的方法和技术,许多企业将使用“现成的”解决方案。
投资活跃
全球范围内,企业对大数据技术和服务的投资增长都会很快。IDC预测,未来几年的平均增速将大于30%。
市场透明度还不够
企业还有许多待解答的问题。对于许多IT负责人来说,可衡量的商业收益、数据安全、数据法律以及可使用数据的准确定义这些问题都不够透明。对于企业来说,数据正在加速成为运作资源和生产要素。要实现从技术到信息和知识获取的转变、使用开放源、进行实时分析,企业就要对技能、解决方案和服务投资。许多企业对这一领域了解不多,需要有人为他们解释技术、组织、法律以及文化方面的问题。
总的来说,企业在获取大数据技术和分析方面的信息以及咨询需求都非常大。对于这一领域的ICT供应商和服务商来说,这是一个绝好的发展壮大的机会。要制定正确的市场营销策略,获得漂亮的销售成绩,关键就在于了解用户环境中IT和商业决策者的要求和期望。
为验证IDC对大数据分析发展现状、发展计划和要求方面的预测,IDC将于今年秋季对德国的应用企业进行调查。这份调查名为《分析、可视化、预测——2013德国数据策略:大数据分析能否带来商业成功》,主要是了解先进的分析工具在企业中的应用情况,了解企业更倾向于使用哪种解决方案来选择和加工重要数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29