
如何用大数据找到下一个扎克伯克_数据分析师考试
很多人都对科技创业公司的创始人有一套固定印象:男性,20多出头,从小就在地下室里玩电脑,大学中途辍学,后来成为亿万富豪。这正是马克·扎克伯格(Mark Zuckerberg)、史蒂夫·乔布斯(Steve Jobs)和比尔·盖茨(Bill Gates)的真实写照。
但有一件事情却被很多人忽略了:这三个人其实都是例外情况。
根据加州大学伯克利分校哈斯商学院的数据分析,多数成功拿到风险投资的科技创业公司的创始人简历都很常规。平均而言,这些创始人年龄38岁,拥有硕士学位和16年的工作经验。
然而,如果这样一个人来到顶尖风投的办公室,却很有可能遭到拒绝。风险投资家往往只接受熟人的推荐,而且高度依赖直觉和经验。“任何看起来像马克·扎克伯格的人都能欺骗我。”美国孵化器Y-Combinator联合创始人保罗·格雷厄姆(Paul Graham)说。
然而,这种模式却意味着投资者可能错过一些真正有潜力的创业者。随着科技行业的日益多样化,扩大投资对象的范围不仅对公司形象有利,而且能够带来实实在在的利益。种子投资可以促进创业公司的发展,所以选好投资对象至关重要。
“我们脑子里对科技创业公司创始人形成了固定印象:他们都是20多岁的白人男性,在顶尖学府学习计算机并中途退学。”彭博社旗下科技投资基金Bloomberg Beta负责人罗伊·巴哈特(Roy Bahat)说,“但只有很少的数据迎合了我们的想象。而实际上,我们可能都错了。”
用数据预测下一个创业者
Bloomberg Beta正在采取与众不同的策略。该基金与哈斯商学院的研究人员汇总了成功创业者的数据,并希望借此预测哪些人有朝一日可能成功创业——甚至赶在他们创业之前就预测这种概率。之后,投资者便可与这些人取得联系,并与之会面。(询问硅谷程序员是否计划创业,有点像询问好莱坞的服务员是否想演电影。)
由于风险投资仍然高度依赖熟人之间的推荐,所以这个名为“未来创业者”(Future Founders)的项目希望找到更多潜力巨大的创业者。
“还有哪个行业需要等着你的朋友把客户介绍给你。”巴哈特说。
该项目还有可能产生另外一个影响:找到更加多样化的创业人群。
哈斯商学院企业家精神教授托比·斯图尔特(Toby Stuart)和博士候选人吴威仪(Weiyi Ng,音译),利用招聘公司People. Co和创业投资网站AngelList的数据分析了当今的科技创始人现状。他们的重点是2005年以来在湾区和纽约创办的公司,并借此开发了一套算法,预测这些地区的哪些人有朝一日可能创办公司。
其中的一些结果颠覆了人们的故有认知:尽管现有的创业者中只有12%是女性,但当他们根据成功创业者的其他特质寻找潜在创业者时,却有20%是女性。
“如果你仅关注获得融资的人的专业背景,就会发现拥有这些背景的人比真正得到融资的人更加多样。”巴哈特说。
数据显示,只有53%的创始人拥有技术背景,表明计算机学位并非必要因素。在潜在的创业者中,拥有技术背景的人有8%为女性。
吴威仪表示,创业者的平均学历为硕士,而大学中途退学的人占比“从统计意义上可以忽略”。创业者的平均年龄为38岁,甚至有38%获得风投支持的创业者超过40岁。
在预测某人是否会创业时,最可靠的因素是“此人曾经任职于风投支持的企业”,这一点不太出人意料。供职于谷歌可能有助于创业。在同一职位上任职时间较长的人,创业的概率也会随之降低。而曾经创业失败的人,更有可能在二次创业时获得风投支持。
目前就对Bloomberg Beta的战略能否奏效下判断还为时尚早。过去两年间,该公司每年都会找到350名潜在创业者,去年有8人创业,3人获得风投,而Bloomberg Beta投资了其中的1家。巴哈特表示,即使他们发现的潜在创业者并没有创办公司,也可以借此为其投资的公司物色优秀人才。
另外几家投资者也高度依赖数据制定投资决策。Google Ventures就参考了创业公司的地理位置和创始人的过往经历等数据。WR Hambrecht & Co几乎完全依靠算法投资,但该公司表示,在一家公司的成功中,创始人的因素仅占12%的比例,他们所进军的市场更加重要。
“没有一种方法可以预测未来。”WR Hambrecht董事总经理托马斯·瑟斯顿(Thomas Thurston)说,“大家都可以把各种数据作为预测指标。”
事实的确如此:创业投资永远不会成为一项科学。这一行业很大程度上取决于时机和运气。对人的判断同样非常重要。不过,只要我们采取更多措施,而不仅仅是坐在办公室里等着穿套头衫的毛头小子找上门来,肯定会有更加多样的创业者获得风投支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25