
成功数据分析所面临的5项挑战_数据分析师考试
怎样才能使企业升级到一个新的水平,并开始一个大数据发展战略的部署呢?本文将介绍企业成功实现大数据策略所需要克服的5个关键挑战问题:
大数据将增加企业对IT部门的依赖
在过去几年里,IT部门在企业中的重要性越发突显,而在未来几年,我们将看到,随着物联网和工业网络的出现,许多目前未连接的设备将变得数据化,并开始产生大量数据。而对于那些仅仅只开发线下产品,仅仅利用IT进行企业的网站建设的企业来说,这将意味着一项重大的变革。在未来几年,IT部门将成为企业所有业务部门的核心部分。大数据将以不同的工作方式渗透和影响到企业内的所有部门。
所以除了能够访问数据,大数据项目将成为企业不同部门的重要组成部分,因此各个业务部门也将需要他们自己的IT员工。对于多数企业,IT部门将成为企业中的一个更为重要的组成,那些目前仍然只是开发线下产品的公司而言,这无疑是他们将需要克服的一个重大转变。
大数据的商业案例难以从一开始就确定
几乎在任何企业,在一个大数据项目开始部署之前,先建立一个商业案例都是非常重要的。然而,大数据项目所面临的挑战是确定其投资回报率(ROI)是相当困难的,因为大数据项目需要投资新的硬件和软件,并采用一种新的工作方式。在任何行业内地任何企业,大数据带来了不同的可能性,其结果也必然会不同。为了能够确定投资回报率,企业应该启动一个试点项目,其也可以被当作是一次经验的学习,以便能够在以后的大数据项目中提供相关的ROI遵循见解。
因此,企业所需要克服的挑战是,在一个大数据项目完成之前,很难确定其有效的投资回报率的。但是,没有一个明确的投资回报率,又会使得大数据项目的执行变得相当困难。为了克服这一挑战,企业最好从一个小的、定义良好的试点项目开始着手,将该试点项目视为本身不会带来投资回报的项目,但您会从中学到很多关于大数据对于您企业的意义。通过您企业在试点项目中所取得的经验,并吸取相关的教训,进而可以用来更好地确定企业未来大数据项目的ROI。
企业内的数据通常存储在筒仓
为了充分利用大数据,企业需要将所有不同的数据源的数据进行合并。虽然大数据的特性之一便是其庞大的数据量,而其正是来源对对海量数据进行合并的结果。大数据发展的趋势便是成为混合数据。然而,问题在于,如果一家企业内的不同部门分别进行数据收集(毕竟,各部门单独进行数据收集是最有可能做到的)这会造成使企业内的数据难以共享的局面,尽管很可能并不是故意的。以耐克公司为例,该公司曾经在整个企业范围内进行数据储存,从而限制了可以用数据来完成的工作。然后他们去掉了筒仓将所有数据合并到一个中央平台,所有员工均可以基于其职位角色访问。这使耐克保持了创新,进而保持了领先于竞争对手的优势。
除了企业内的数据仓,企业也应该注意外面的世界,并开始思考可以使用的新的数据集。结合开放的社交媒体数据和公共数据可以提供很大的启示和见解。企业在开发一个大型数据策略时,应该开始跳出企业范围内进行思考,不要让并没有自己被限制在企业内的数据。
保证客户的隐私,同时充分利用现有数据
在斯诺登事件之后,隐私泄露的问题似乎已经是过去的事了,但如果企业那个妥善处理他们的数据,这其实也并不构成太大的问题。隐私权仍然是消费者的一个非常重要的权利,而且应该得到保护。企业应努力在寻求利润最大化和客户隐私数据使用之间的平衡。
为了做到这一点,企业应该公开透明的告知他们的客户,他们收集了客户哪些方面的数据,为什么要收集、存储和分析这些数据。另外,企业应该尽可能简单的让客户明白:企业收集和调整了哪些数据,以及数据是如何被使用的。最后,数据的安全性应该是企业的关键,企业应该做些什么才能防止数据泄露。在过去几年,我们已经看到太多的数据泄露对消费者的隐私带来的负面影响。
在保护客户数据的隐私和获得收集分析数据的回报之间取得适当的平衡是困难的,但在长期而言,如果您的企业成功地保护客户的隐私,收集分析数据的回报肯定是可观的。
大数据项目需要文化的转变
在许多企业中,有一些不相信数据的力量的管理者,这阻碍了企业向以数据驱动的信息为中心的企业方面的转型。他们不信任大数据,做决策时宁愿依靠自己的直觉,因此他们不认为企业有必要转向更加以数据为驱动的。事实上,据IBM的调查发现,有三分之一的企业领导者不信任他们收到的数据信息来做出决策。
因此,数据的准确性是非常重要的。这意味着企业需要确保实际收集的数据是正确的,以及分析的算法是正确的,以确保从数据中得出的信息结论是正确的。这需要一种企业文化的转变,其需要能够说服所有的企业领导者相信大数据,并在制定大数据策略时,积极的面对派生信息这一个重大的挑战。为了克服这一挑战,企业应该花费足够的时间和精力来教育员工和经理们如何处理数据和使用数据,以做出正确的决策。这一工作是相当费时的,但却能逐步建立起企业对于大数据的信任。
虽然开发一个大数据策略是困难的,但企业不应该止步。企业应该从或大或小的项目中开始发掘出企业所拥有的数据的价值,并结合企业内数据与其他数据集来分析其中蕴含的信息和见解。对于那些已经成功地实施了大数据战略的企业而言,其过程从来都不是一件容易的事,但其带来的结果绝对是令人印象深刻的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16