京公网安备 11010802034615号
经营许可证编号:京B2-20210330
想学大数据?10条激励人心的数据科学家名言_数据分析师培训
几年前,哈佛商业评论说数据科学家的是“二十一世纪最性感的工作”。但你知道做一个数据科学家意味着什么吗?来,我们先看看这些数据科学专家的名言。
Data scientists “tend to be “hard scientists”, particularly physicists, rather than computer science majors. Physicists have a strong mathematical background, computing skills, and come from a discipline in which survival depends on getting the most from the data. They have to think about the big picture, the big problem – DJ Patil, VP of Product at RelateIQ
“数据科学家更倾向于是’硬科学家’ ,相对于计算机专业的,他们更像物理学家。物理学家有强硬的数学背景,计算机技能,并且来自一个靠数据吃饭的领域。他们需要从整体的角度思考,考虑比较宏大的问题。”–DJ Patil, Product at RelateIQ的副总裁
“They need to find nuggets of truth in data and then explain it to the Business leaders” – Rchard Snee Emc – See more
“他们需要从数据中找到有用的真相,然后解释给领导者。” – Rchard Snee Emc
“A data scientist is someone who knows more statistics than a computer scientist and more Computer science than a statistician” – Josh Blumenstock
“数据科学家是一个比计算机科学家懂更多统计学,比统计学家懂更多计算机科学的人。” – Josh Blumenstock
“Data scientist is just a sexed up word for a statistician” – Nate Silver
“数据科学家只是‘统计学家’一个性感一些的名字。 ”– Nate Silver
“Data scientists are involved with gathering data, massaging it into a tractable form, making it tell its story, and presenting that story to others” – Mike Loukides, VP, O’Reilly Media
“数据科学家收集数据,把数据融入到易懂的形式中,让数据讲故事,并且把故事讲给别人听。”–Mike Loukides, O’Reilly Media的副总裁
“The data scientist was called, only half-jokingly, a caped superhero” – Ben Rooney
“数据科学家曾经被誉为戴着披风的超级英雄(当然只是开个玩笑)” – Ben Rooney
“Think analytically, rigorously, and systematically about a business problem and come up with a solution that leverages the available data”
“用分析的角度、严格、系统地思考业务问题,然后得出能够影响这些数据的解决方案。 ”– Michael O’Connell, TIBCO的高级分析总监
“Data Scientist = statistician + programmer + coach + storyteller + artist”- Shlomo Aragmon
“数据科学家=统计学家+程序员+讲故事的人+艺术家。“ – Shlomo Aragmon
“They are half hacker, half analyst, they use data to build products and find insights” – Monica Rogati
“他们一半是黑客,一半是分析师,他们用数据来做产品、提出新见解。“– Monica Rogati
“A data scientist is someone who can obtain, scrub, explore, model and interpret data, blending hacking, statistics and machine learning. Data scientists not only are adept at working with data, but appreciate data itself as a first-class product” – Hillary Mason, Founder at Fast Forward Labs
“数据科学家是懂得获取、清洗、探索、建模、解释数据的人,还要融合入侵技术、统计学和机器学习。数据科学家不仅要处理数据,还要把数据本身作为一个五星产品。”– Hillary Mason, Fast Forward Labs的创始人
那么, 数据科学家都做些什么呢?简单来说,他收集数据、清洗、创建数据集、分析数据然后提出新观点。他也尝试用现有的数据预测未来,帮助业务提高产品、服务的质量、顾客粘性。更好的质量意味着更能取悦顾客、获得收益。
这里有数据科学家最应该具备三个的特质:
1.一个优秀的数据科学家知道如何提出好问题
2.理解他手上的数据的结构
3.能够很好地解读这些数据
简单来说,数据科学就是关于提出合适的问题,然后提出有意义的见解来指导正确的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01