京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据+工业4.0 =造业的无限想象_数据分析师考试
当今世界,一场新的制造业竞争已然拉开序幕:美国力促高端制造业回归、德国倾力打造工业4.0。而作为制造业大国,中国则推出了"中国制造2025"行动计划。"工业4.0"是以智能制造为主导的第四次工业革命,智能制造和智能工厂被列为工业4.0主攻方向。制造业的这一轮变革使得制造智能化成为一场全球范围的技术革命。之所以称其为技术革命,很大程度上是因为这场工业革命与人工智能、物联网、大数据、云计算等等这些最前沿的技术有着千丝万缕的联系。可以说,没有这些技术的支撑,我们无法想象工业4.0的未来。
所谓的大数据技术,就是从各种类型的数据中,采用新处理模式快速获得有价值的信息,从而实现深度理解、洞察发现与精准决策。根据埃森哲的相关数据,目前,大数据产业已渐趋成熟,亟待被各行各业所运用。
大数据产业的逐渐成熟,使其成为工业4.0的标配技术之一。在制造业领域,很多机器都安装了一个或或多个微处理器采集生产数据。这些无处不在的传感器和微处理器,形成了极为庞大的数据来源,常规的数据库技术己难以完成捕捉、存储、管理和分析这种大规模的数据集合。而利用大数据技术,则能清晰而有逻辑地对这些数据进行有目的的分析。其给制造业带来的益处包括优化生产与管理流程、降低成本、提高运营效率、实现精准营销等等。大数据技术可以帮助制造业企业掌握并预测以客户为中心的市场状况和变化趋势,并根据数据洞察形成最佳的行动方案和建议。
根据前瞻产业研究院发布的《工业4.0时代中国制造业商业模式创新与投资战略规划专项分析报告》,大数据技术在制造业的消费者洞察、客户互动、智慧生产等方面,都有其独特的应用。
事实上,对制造业企业而言,大数据技术的战略意义不仅在于掌握庞大的数据信息,更在于对数据的"加工能力"——对大量的数据进行专业化的处理,使之转化成为对企业有用的信息。制造业企业如果能够在工业环境中建立起大数据平台,提高工厂对不同设备收集的海量信息进行梳理的能力,提高企业信息系统的计算能力和数据消化能力,实现对企业的产品数据、运营数据、销售数据、客户数据的实时而有针对性的分析,并用其指导下一轮的研发、生产、销售和服务。这将会使得企业能够在低成本运营的同时,有效实现按需生产,从而在实现绿色生产的同时,提高企业的经营效率。——这是真正的可持续发展。
时代钟声已经敲响,大数据时代已来。在工业4.0的浪潮之下,企业只有拥抱大数据,才能不被淹没在时代的浪潮中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31