cda

数字化人才认证

首页 > 行业图谱 >

12345678 1/8
异常值处理的常用算法
2024-12-06
异常值在数据分析和机器学习中起着至关重要的作用。它们可能源自测量错误、数据损坏,或者代表真实但罕见的事件。这种数据的存在可能会极大地影响我们的分析结果和模型准确性。因此,识别和处理异常值是我们必须认真 ...
异常值处理的最佳实践
2024-12-06
在数据分析和预处理中,异常值处理是至关重要的一环。它旨在识别并处理那些明显偏离其他观测值的数据点,这些异常值可能是由测量误差、数据输入问题或其他非典型情况引起的。对数据准确性和模型性能都可能造成显著影 ...

R语言:异常值检验、离群点分析、 异常值处理

R语言:异常值检验、离群点分析、异常值处理
2017-07-17
R语言:异常值检验、离群点分析、异常值处理 笔者寄语:异常值处理一般分为以下几个步骤:异常值检测、异常值筛选、异常值处理。其中异常值检测的方法主要有:箱型图、简单统计量(比如观察极值) 异常值处理方 ...

教你使用3σ原则来进行 异常值处理

教你使用3σ原则来进行异常值处理
2020-07-31
在python数据清洗过程中,我们经常会遇到一些偏离正常范围的数据,例如人的体重为56吨,这些数据叫做异常值,如果不做异常值处理,会对我们最终的数据分析造成影响。小编今天给大家带来了一种很实用的异常值处理方 ...
异常值处理常用的几种方法
2020-07-01
异常值,又称离群点,是指那些在数据集中存在的不合理的值,需要注意的是,不合理的值是偏离正常范围的值,不是错误值。比如人的身高为-1m,人的体重为1吨等,都属于异常值的范围。虽然异常值不常出现,但是又会对 ...

数据分析实践入门:缺失值处理、重复值处理、 异常值处理 等

数据分析实践入门:缺失值处理、重复值处理、异常值处理
2020-05-11
从菜市场买来的菜,总有一些是坏掉的不太好的,所以把菜买回来之后要做一遍预处理,也就是把那些坏掉的不太好的部分扔掉。现实中大部分的数据都类似于菜市场的菜品,拿到手以后会有一些不好的数据,所以都要先做 ...

R语言:异常值检验、离群点分析、 异常值处理

R语言:异常值检验、离群点分析、异常值处理
2017-04-29
R语言:异常值检验、离群点分析、异常值处理 笔者寄语:异常值处理一般分为以下几个步骤:异常值检测、异常值筛选、异常值处理。其中异常值检测的方法主要有:箱型图、简单统计量(比如观察极值) 异常值处理 ...

【CDA干货】Power BI函数大全:分类、实操与实战全指南

【CDA干货】Power BI函数大全:分类、实操与实战全指南
2026-02-13
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量值计算、时间智能分析,都离不开函数的灵活运用。很多从业者在使用Power BI时,常常陷 ...

表结构数据的获取、加工与使用:CDA数据分析师的核心实操指南

表结构数据的获取、加工与使用:CDA数据分析师的核心实操指南
2026-02-09
表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的核心链路。CDA的核心价值,并非单纯解读数据,而是从数据源头出发,规范获取表结构数据 ...

【CDA干货】箱线图上下限在线计算:原理、工具与实操指南

【CDA干货】箱线图上下限在线计算:原理、工具与实操指南
2026-01-28
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分析、质量控制、学术研究等场景。其中,上下限(又称异常值截断点)的计算是箱线图绘制 ...

【CDA干货】特征重要性分析:从模型到业务的核心决策依据

【CDA干货】特征重要性分析:从模型到业务的核心决策依据
2026-01-27
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的关键环节。它通过量化各特征对目标变量的影响程度,筛选出核心有效特征,剔除冗余干扰 ...

【CDA干货】支持向量机处理非线性问题:核技巧的原理与实践

【CDA干货】支持向量机处理非线性问题:核技巧的原理与实践
2026-01-26
支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本分类、生物信息学等领域。最初的SVM仅能处理线性可分问题,通过寻找最优分类超平面实现 ...

CDA数据分析师视角:企业数据管理方法论的落地与实践

CDA数据分析师视角:企业数据管理方法论的落地与实践
2026-01-21
在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法论以“战略引领、治理为基、全生命周期管控、价值驱动”为核心,构建从数据采集到价值 ...

CDA数据分析师实战:决策树分析的业务应用与落地指南

CDA数据分析师实战:决策树分析的业务应用与落地指南
2026-01-20
在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判断交易是否存在欺诈风险、评估客户授信等级等。决策树(Decision Tree)作为经典的监督 ...

CDA数据分析师实战:聚类分析的业务应用与落地指南

CDA数据分析师实战:聚类分析的业务应用与落地指南
2026-01-19
在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量用户行为数据无明确分层标签、产品属性数据无法快速定位同类群体、市场调研数据难以识 ...

CDA数据分析师实战:主成分分析的业务应用与落地指南

CDA数据分析师实战:主成分分析的业务应用与落地指南
2026-01-15
在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时长、加购次数”等10+个行为指标,市场调研涵盖“价格敏感度、品牌偏好”等多个维度,这 ...

CDA数据分析师实战:逻辑回归的业务应用与落地指南

CDA数据分析师实战:逻辑回归的业务应用与落地指南
2026-01-14
在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判断客户是否存在违约风险”“识别用户是否为流失高潜人群”。这类需求的核心是“将数据 ...

【CDA干货】数据清洗基本流程全解析:从“脏数据”到“高质量数据”的蜕变

【CDA干货】数据清洗基本流程全解析:从“脏数据”到“高质量数据”的蜕变
2026-01-13
在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在重复、缺失、异常、格式混乱等问题,这些“脏数据”会直接导致分析结果失真,甚至误导 ...

CDA数据分析师实战:线性回归的业务应用与落地指南

CDA数据分析师实战:线性回归的业务应用与落地指南
2026-01-13
在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测下月销售额”“分析哪些因素对用户消费金额影响最大”“评估营销策略对销量的贡献度” ...

CDA数据分析师实战:相关系数的业务应用与落地指南

CDA数据分析师实战:相关系数的业务应用与落地指南
2026-01-12
在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长与消费金额是否相关”“广告投放量与销售额是否存在关联”“产品评分与复购率是否有联 ...
12345678 1/8

OK
客服在线
立即咨询