cda

数字化人才认证

首页 > 行业图谱 >

如何评估数据集的质量并减少数据 偏差 ?

如何评估数据集的质量并减少数据偏差
2024-03-13
在机器学习和数据分析领域,数据集的质量对于模型的准确性和稳定性至关重要。一个高质量的数据集应具有合适的样本量、代表性良好的样本以及无偏的标签。然而,在实践中,数据集常常存在着各种问题,如数据偏差。本 ...

如何解决数据 偏差 和模型不确定性问题?

如何解决数据偏差和模型不确定性问题?
2024-03-12
在数据分析和机器学习领域,数据偏差和模型不确定性是常见的问题。数据偏差指的是数据集中的样本在某些方面与整体数据分布存在差异,而模型不确定性则是指模型在进行预测时的不确定程度。解决这些问题需要综合运用 ...
如何在数据分析过程中避免偏差出现?
2023-12-27
数据分析是现代商业决策和研究的重要工具,但在进行数据分析时,经常会面临偏差的挑战。偏差是指由于数据收集、样本选择、处理方法等因素引起的系统性误差,可能导致分析结果不准确或产生误导性结论。本文将探讨一 ...
在数据分析中如何避免偏差和错误?
2023-10-10
在当今信息时代,数据分析已成为业务决策和问题解决的重要工具。然而,如果不谨慎处理和分析数据,就可能出现偏差和错误,从而导致错误的结论和决策。本文将探讨在数据分析中如何避免偏差和错误,以提高分析结果的 ...
如何避免数据分析中的偏差和误解?
2023-08-18
随着大数据时代的到来,数据分析在各个领域变得越来越重要。然而,数据分析过程中存在着一些常见的偏差和误解,这可能导致错误的结论和决策。本文将探讨如何避免数据分析中的偏差和误解,从而确保准确和可靠的分析 ...
如何避免数据分析中的偏差和误差?
2023-08-18
在当今信息时代,数据分析扮演了重要角色,帮助企业和组织做出明智的决策。然而,数据分析过程中常常存在偏差和误差,可能导致不准确的结论和错误的判断。本文将探讨常见的数据分析偏差和误差,并提供一些有效的避 ...
分析数据时如何避免偏差
2023-06-15
在分析数据时,避免偏差是至关重要的。偏差是指数据收集或分析过程中可能发生的错误或倾向性,导致结果不准确或不可靠。如果数据偏差严重,那么任何基于这些数据得出的结论都可能是错误的。因此,处理数据偏差是数据 ...

SPSS共同方法 偏差 检验结果怎么看?

SPSS共同方法偏差检验结果怎么看?
2023-06-02
共同方法偏差(Common Method Bias,简称CMB)是指在研究中使用的多个变量因具有相似的测量方式、评价标准或评估者而导致的系统性偏差。当存在CMB时,会使得变量间的关系被错误解释,从而影响研究结论的有效性和可 ...

机器学习中的 偏差 和方差是什么?有哪些区别?

机器学习中的偏差和方差是什么?有哪些区别?
2020-07-20
偏差与方差是我们在机器学习中经常遇到的两个概念,而且在有关机器学习的面试中,偏差与方差也经常拿来考验面试者的机器学习的基础知识。偏差与方差这两者看似简单,但要真正弄清楚两者之间的联系与区别,必须要下 ...

为什么说朴素贝叶斯是高 偏差 低方差?

为什么说朴素贝叶斯是高偏差低方差?
2019-04-04
大家在学习机器学习的时候可能听说过一种算法,这种算法就是朴素贝叶斯算法,而很多人说朴素贝叶斯算法是高偏差低方差,在这篇文章中我们就详细的为大家介绍一下朴素贝叶斯为什么被说高偏差低方差的原因 ...

存在 偏差 的机器学习模型会有什么影响?

存在偏差的机器学习模型会有什么影响?
2019-04-04
大家都知道,现如今,人工智能是一个十分火热的概念,其实就目前而言,人工智能已经不能够用概念来形容了,需要用技术来形容,而人工智能的核心就是机器学习,机器学习的要素之一就是模型,那么存在偏差 ...

CDA数据分析师:以时间序列为尺,洞察数据动态价值

CDA数据分析师:以时间序列为尺,洞察数据动态价值
2025-12-17
在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台的每小时访问量、金融机构的每分钟交易金额、工厂设备的实时运行参数……这些按时间顺 ...

CDA数据分析师:以用户画像为钥,解锁精准业务增长

CDA数据分析师:以用户画像为钥,解锁精准业务增长
2025-12-16
在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而,不少企业虽投入大量资源收集用户数据,却陷入“数据堆积如山,用户仍像雾里看花”的困 ...

【CDA干货】标准差/均值>0.5:数据高波动的实用判断标准与应用指南

【CDA干货】标准差/均值>0.5:数据高波动的实用判断标准与应用指南
2025-12-12
在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金经理紧盯收益率波动是否超出风险阈值。但“波动大”不能凭直觉判断,需要量化标准。实 ...

CDA数据分析师:以SQL为刃,精准挖掘数据价值

CDA数据分析师:以SQL为刃,精准挖掘数据价值
2025-12-12
在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库中提取原始数据、进行多维度清洗整合,还是生成支撑业务决策的统计结果,都离不开SQL ...

CDA数据分析师:以数据库为基,筑牢数据洞察根基

CDA数据分析师:以数据库为基,筑牢数据洞察根基
2025-12-11
在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提取都依赖它,而CDA分析师则是“驾驭骨架的挖掘者”,通过数据库工具从海量数据中提炼业 ...

【CDA干货】神经网络最后一层:激活函数加还是不加?核心逻辑与选择指南

【CDA干货】神经网络最后一层:激活函数加还是不加?核心逻辑与选择指南
2025-12-05
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异常;有人在分类任务中省略激活函数,使得模型无法输出合理概率分布。实际上,这一问题 ...

【CDA干货】特征相对重要性:解锁模型鲁棒性与可解释性的双重密钥

【CDA干货】特征相对重要性:解锁模型鲁棒性与可解释性的双重密钥
2025-12-05
在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据,将难以通过合规审查;电商推荐模型若对异常点击数据敏感,会导致推荐效果剧烈波动。而 ...

CDA数据分析师:指标体系搭建方法论,让数据驱动精准落地

CDA数据分析师:指标体系搭建方法论,让数据驱动精准落地
2025-12-05
在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析师的核心门槛——前者是“算对数据”,后者是“用对数据”。不少分析师陷入“报表堆砌 ...

【CDA干货】回归分析中调整后R方为负?本质、成因与应对策略

【CDA干货】回归分析中调整后R方为负?本质、成因与应对策略
2025-12-04
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通常在0到1之间。但在实际分析中,不少初学者会遇到“调整后R方为负值”的反常情况:明明 ...

OK
客服在线
立即咨询