cda

数字化人才认证

首页 > 行业图谱 >

如何评估数据集的质量并减少数据 偏差 ?

如何评估数据集的质量并减少数据偏差
2024-03-13
在机器学习和数据分析领域,数据集的质量对于模型的准确性和稳定性至关重要。一个高质量的数据集应具有合适的样本量、代表性良好的样本以及无偏的标签。然而,在实践中,数据集常常存在着各种问题,如数据偏差。本 ...

如何解决数据 偏差 和模型不确定性问题?

如何解决数据偏差和模型不确定性问题?
2024-03-12
在数据分析和机器学习领域,数据偏差和模型不确定性是常见的问题。数据偏差指的是数据集中的样本在某些方面与整体数据分布存在差异,而模型不确定性则是指模型在进行预测时的不确定程度。解决这些问题需要综合运用 ...
如何在数据分析过程中避免偏差出现?
2023-12-27
数据分析是现代商业决策和研究的重要工具,但在进行数据分析时,经常会面临偏差的挑战。偏差是指由于数据收集、样本选择、处理方法等因素引起的系统性误差,可能导致分析结果不准确或产生误导性结论。本文将探讨一 ...
在数据分析中如何避免偏差和错误?
2023-10-10
在当今信息时代,数据分析已成为业务决策和问题解决的重要工具。然而,如果不谨慎处理和分析数据,就可能出现偏差和错误,从而导致错误的结论和决策。本文将探讨在数据分析中如何避免偏差和错误,以提高分析结果的 ...
如何避免数据分析中的偏差和误解?
2023-08-18
随着大数据时代的到来,数据分析在各个领域变得越来越重要。然而,数据分析过程中存在着一些常见的偏差和误解,这可能导致错误的结论和决策。本文将探讨如何避免数据分析中的偏差和误解,从而确保准确和可靠的分析 ...
如何避免数据分析中的偏差和误差?
2023-08-18
在当今信息时代,数据分析扮演了重要角色,帮助企业和组织做出明智的决策。然而,数据分析过程中常常存在偏差和误差,可能导致不准确的结论和错误的判断。本文将探讨常见的数据分析偏差和误差,并提供一些有效的避 ...
分析数据时如何避免偏差
2023-06-15
在分析数据时,避免偏差是至关重要的。偏差是指数据收集或分析过程中可能发生的错误或倾向性,导致结果不准确或不可靠。如果数据偏差严重,那么任何基于这些数据得出的结论都可能是错误的。因此,处理数据偏差是数据 ...

SPSS共同方法 偏差 检验结果怎么看?

SPSS共同方法偏差检验结果怎么看?
2023-06-02
共同方法偏差(Common Method Bias,简称CMB)是指在研究中使用的多个变量因具有相似的测量方式、评价标准或评估者而导致的系统性偏差。当存在CMB时,会使得变量间的关系被错误解释,从而影响研究结论的有效性和可 ...

机器学习中的 偏差 和方差是什么?有哪些区别?

机器学习中的偏差和方差是什么?有哪些区别?
2020-07-20
偏差与方差是我们在机器学习中经常遇到的两个概念,而且在有关机器学习的面试中,偏差与方差也经常拿来考验面试者的机器学习的基础知识。偏差与方差这两者看似简单,但要真正弄清楚两者之间的联系与区别,必须要下 ...

为什么说朴素贝叶斯是高 偏差 低方差?

为什么说朴素贝叶斯是高偏差低方差?
2019-04-04
大家在学习机器学习的时候可能听说过一种算法,这种算法就是朴素贝叶斯算法,而很多人说朴素贝叶斯算法是高偏差低方差,在这篇文章中我们就详细的为大家介绍一下朴素贝叶斯为什么被说高偏差低方差的原因 ...

存在 偏差 的机器学习模型会有什么影响?

存在偏差的机器学习模型会有什么影响?
2019-04-04
大家都知道,现如今,人工智能是一个十分火热的概念,其实就目前而言,人工智能已经不能够用概念来形容了,需要用技术来形容,而人工智能的核心就是机器学习,机器学习的要素之一就是模型,那么存在偏差 ...

【CDA干货】KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南

【CDA干货】KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南
2025-08-20
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评估体系中,KS 曲线(Kolmogorov-Smirnov Curve)是 “核心标尺” 之一。它通过对比 “ ...

CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察

CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察
2025-08-18
CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数”)往往无法满足业务决策的深度需求。而 SQL 多个聚合函数的组合使用(如同时调用SUM ...

CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用

CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用
2025-08-18
CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库表、CSV 文件等)是最基础、最常用的数据形态之一。这类数据以清晰的行列结构承载信息 ...

【CDA干货】t 统计量为负数时的分布计算方法与解析

【CDA干货】t 统计量为负数时的分布计算方法与解析
2025-08-14
t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。当 t 统计量出现负数时,许多初学者会对其分布计算产生困惑。本文将从 t 分布的基本特 ...

【CDA干货】前台流量与后台流量:数据链路中的双重镜像

【CDA干货】前台流量与后台流量:数据链路中的双重镜像
2025-08-13
前台流量与后台流量:数据链路中的双重镜像​ 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与后台流量如同数据链路的 “双重镜像”,前者映射用户与产品的交互轨迹,后者记录系统运 ...

【CDA干货】中介分析的 SPSS 结果解读:从原理到实践

【CDA干货】中介分析的 SPSS 结果解读:从原理到实践
2025-08-07
中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而是存在复杂的传导机制。中介分析作为探究这种机制的重要方法,能够揭示自变量(X)如何 ...

【CDA干货】解析 F 边界检验:协整分析中的实用工具

【CDA干货】解析 F 边界检验:协整分析中的实用工具
2025-08-07
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系)是一项关键工作。传统的协整检验方法如 Engle-Granger 检验、Johansen 检验等,往往对 ...

CDA 数据分析师行业标准:构建数据人才的能力坐标系

CDA 数据分析师行业标准:构建数据人才的能力坐标系
2025-08-07
CDA 数据分析师行业标准:构建数据人才的能力坐标系​ 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为数据人才能力评估的基准,为行业人才培养、企业用人规范提供了系统化的参考框架。这套 ...

【CDA干货】评判两组数据与初始数据准确值的方法

【CDA干货】评判两组数据与初始数据准确值的方法
2025-08-07
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组数据进行评估,判断它们与初始设定的准确值(或真实值)之间的吻合程度。这种评判不仅 ...

OK
客服在线
立即咨询