cda

数字化人才认证

首页 > 行业图谱 >

如何评估数据集的质量并减少数据 偏差 ?

如何评估数据集的质量并减少数据偏差
2024-03-13
在机器学习和数据分析领域,数据集的质量对于模型的准确性和稳定性至关重要。一个高质量的数据集应具有合适的样本量、代表性良好的样本以及无偏的标签。然而,在实践中,数据集常常存在着各种问题,如数据偏差。本 ...

如何解决数据 偏差 和模型不确定性问题?

如何解决数据偏差和模型不确定性问题?
2024-03-12
在数据分析和机器学习领域,数据偏差和模型不确定性是常见的问题。数据偏差指的是数据集中的样本在某些方面与整体数据分布存在差异,而模型不确定性则是指模型在进行预测时的不确定程度。解决这些问题需要综合运用 ...
如何在数据分析过程中避免偏差出现?
2023-12-27
数据分析是现代商业决策和研究的重要工具,但在进行数据分析时,经常会面临偏差的挑战。偏差是指由于数据收集、样本选择、处理方法等因素引起的系统性误差,可能导致分析结果不准确或产生误导性结论。本文将探讨一 ...
在数据分析中如何避免偏差和错误?
2023-10-10
在当今信息时代,数据分析已成为业务决策和问题解决的重要工具。然而,如果不谨慎处理和分析数据,就可能出现偏差和错误,从而导致错误的结论和决策。本文将探讨在数据分析中如何避免偏差和错误,以提高分析结果的 ...
如何避免数据分析中的偏差和误解?
2023-08-18
随着大数据时代的到来,数据分析在各个领域变得越来越重要。然而,数据分析过程中存在着一些常见的偏差和误解,这可能导致错误的结论和决策。本文将探讨如何避免数据分析中的偏差和误解,从而确保准确和可靠的分析 ...
如何避免数据分析中的偏差和误差?
2023-08-18
在当今信息时代,数据分析扮演了重要角色,帮助企业和组织做出明智的决策。然而,数据分析过程中常常存在偏差和误差,可能导致不准确的结论和错误的判断。本文将探讨常见的数据分析偏差和误差,并提供一些有效的避 ...
分析数据时如何避免偏差
2023-06-15
在分析数据时,避免偏差是至关重要的。偏差是指数据收集或分析过程中可能发生的错误或倾向性,导致结果不准确或不可靠。如果数据偏差严重,那么任何基于这些数据得出的结论都可能是错误的。因此,处理数据偏差是数据 ...

SPSS共同方法 偏差 检验结果怎么看?

SPSS共同方法偏差检验结果怎么看?
2023-06-02
共同方法偏差(Common Method Bias,简称CMB)是指在研究中使用的多个变量因具有相似的测量方式、评价标准或评估者而导致的系统性偏差。当存在CMB时,会使得变量间的关系被错误解释,从而影响研究结论的有效性和可 ...

机器学习中的 偏差 和方差是什么?有哪些区别?

机器学习中的偏差和方差是什么?有哪些区别?
2020-07-20
偏差与方差是我们在机器学习中经常遇到的两个概念,而且在有关机器学习的面试中,偏差与方差也经常拿来考验面试者的机器学习的基础知识。偏差与方差这两者看似简单,但要真正弄清楚两者之间的联系与区别,必须要下 ...

为什么说朴素贝叶斯是高 偏差 低方差?

为什么说朴素贝叶斯是高偏差低方差?
2019-04-04
大家在学习机器学习的时候可能听说过一种算法,这种算法就是朴素贝叶斯算法,而很多人说朴素贝叶斯算法是高偏差低方差,在这篇文章中我们就详细的为大家介绍一下朴素贝叶斯为什么被说高偏差低方差的原因 ...

存在 偏差 的机器学习模型会有什么影响?

存在偏差的机器学习模型会有什么影响?
2019-04-04
大家都知道,现如今,人工智能是一个十分火热的概念,其实就目前而言,人工智能已经不能够用概念来形容了,需要用技术来形容,而人工智能的核心就是机器学习,机器学习的要素之一就是模型,那么存在偏差 ...

【CDA干货】神经网络最后一层:激活函数加还是不加?核心逻辑与选择指南

【CDA干货】神经网络最后一层:激活函数加还是不加?核心逻辑与选择指南
2025-12-05
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异常;有人在分类任务中省略激活函数,使得模型无法输出合理概率分布。实际上,这一问题 ...

【CDA干货】特征相对重要性:解锁模型鲁棒性与可解释性的双重密钥

【CDA干货】特征相对重要性:解锁模型鲁棒性与可解释性的双重密钥
2025-12-05
在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据,将难以通过合规审查;电商推荐模型若对异常点击数据敏感,会导致推荐效果剧烈波动。而 ...

CDA数据分析师:指标体系搭建方法论,让数据驱动精准落地

CDA数据分析师:指标体系搭建方法论,让数据驱动精准落地
2025-12-05
在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析师的核心门槛——前者是“算对数据”,后者是“用对数据”。不少分析师陷入“报表堆砌 ...

【CDA干货】回归分析中调整后R方为负?本质、成因与应对策略

【CDA干货】回归分析中调整后R方为负?本质、成因与应对策略
2025-12-04
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通常在0到1之间。但在实际分析中,不少初学者会遇到“调整后R方为负值”的反常情况:明明 ...

CDA数据分析师:以指标为钥,解锁数据与业务的连接密码

CDA数据分析师:以指标为钥,解锁数据与业务的连接密码
2025-12-03
在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论,到“客单价提升带动营收增长”的洞察输出,再到“库存周转天数优化至30天”的目标落 ...

【CDA干货】数据标准化后出现负值?别急!场景化解决全方案

【CDA干货】数据标准化后出现负值?别急!场景化解决全方案
2025-12-02
在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一尺度,为模型训练或业务分析扫清障碍。但很多数据从业者会陷入“负值恐慌”:Z-score ...

CDA数据分析师:用参数估计,让样本数据说出总体真相

CDA数据分析师:用参数估计,让样本数据说出总体真相
2025-12-02
在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全年销量趋势,从2000份用户问卷中评估全网用户满意度,从50家门店数据中预测全国门店营 ...

【CDA干货】解密LSTM预测结果:为何有时相同,有时不同?

【CDA干货】解密LSTM预测结果:为何有时相同,有时不同?
2025-12-01
在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用同一模型、同一输入数据,多次预测的结果却可能存在差异;而有时,预测结果又能完全复 ...

【CDA干货】从杂乱到清晰:无序数据点的系统分析方法论

【CDA干货】从杂乱到清晰:无序数据点的系统分析方法论
2025-11-28
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时上传的杂乱监测数据……这些数据看似混乱,实则隐藏着业务增长的密码、用户需求的线索 ...

OK
客服在线
立即咨询