cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】线性相关点分布的四种基本类型:特征、识别与实战应用

【CDA干货】线性相关点分布的四种基本类型:特征、识别与实战应用
2025-09-25
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心概念 —— 通过观察变量数据的散点分布,结合量化的相关系数,可快速判断变量间是否存 ...

【CDA干货】人工智能重塑工程质量检测:核心应用、技术路径与实践案例

【CDA干货】人工智能重塑工程质量检测:核心应用、技术路径与实践案例
2025-09-24
人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一道防线”。传统检测模式依赖人工肉眼观察、手持设备采样、破坏性试验,存在效率低(如 ...

【CDA干货】AB 实验系统与业务系统的联动机制:从实验设计到业务落地的全流程解析

【CDA干货】AB 实验系统与业务系统的联动机制:从实验设计到业务落地的全流程解析
2025-09-23
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前者需要依赖业务系统提供 “实验场景与用户数据”,后者需要通过前者验证 “优化方案的 ...

CDA 数据分析师:以指标为钥,解锁数据驱动价值

CDA 数据分析师:以指标为钥,解锁数据驱动价值
2025-09-23
CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散的数字集合,若缺乏统一的衡量标准,便无法转化为指导业务的有效信息。而指标,正是将 ...

【CDA干货】限制你眼界的不是算法,而是你自己:在技术工具时代重识人的核心价值

【CDA干货】限制你眼界的不是算法,而是你自己:在技术工具时代重识人的核心价值
2025-09-22
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 “算法不够先进”,将业务突破难归因于 “没掌握复杂模型”,将认知局限解读为 “不会 ...

【CDA干货】算术平均数(Mean)与几何平均数(GeoMean):核心区别与适用场景解析

【CDA干货】算术平均数(Mean)与几何平均数(GeoMean):核心区别与适用场景解析
2025-09-22
在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指向的是算术平均数(Arithmetic Mean,简称 Mean) ,却忽略了另一类关键指标 ——几何 ...

CDA 数据分析师:参数估计助力数据决策的核心力量

CDA 数据分析师:参数估计助力数据决策的核心力量
2025-09-22
CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核心资产。而 CDA(Certified Data Analyst)数据分析师,作为挖掘数据价值、转化数据为 ...

企业名称:滴滴出行    招聘岗位: 数据运营专家 20-30K·17薪 (数据分析岗位招聘信息)

企业名称:滴滴出行 招聘岗位: 数据运营专家 20-30K·17薪 (数据分析岗位招聘信息)
2025-09-22
岗位职责: 1、目标管理:根据部门可量化的关键指标,拆解分阶段分业务目标;建立动态监控体系,定期输出目标达成进度报告,识别偏差风险并提出预警;设计数据看板和自动化监测工具,提升目标管理效率。 2、数据分析 ...

【CDA干货】训练与验证损失骤升:机器学习训练中的异常诊断与解决方案

【CDA干货】训练与验证损失骤升:机器学习训练中的异常诊断与解决方案
2025-09-19
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指标 —— 理想情况下,训练损失与验证损失会随迭代轮次(Epoch)稳步下降,最终趋于平 ...

CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑

CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑
2025-09-19
CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均值、中位数”,到推断总体特征的 “抽样、置信区间”,再到验证业务假设的 “假设检验 ...

【CDA干货】MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区

【CDA干货】MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区
2025-09-18
MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。当单表数据量达到千万级甚至亿级时,查询耗时、写入阻塞、索引维护困难等问题会逐渐凸 ...

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者
2025-09-19
CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字化运营的 “核心载体”,其价值实现依赖 “获取(源头)- 加工(提纯)- 使用(落地) ...

【CDA干货】DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析

【CDA干货】DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析
2025-09-17
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模型作为现代宏观经济学的核心分析工具,其显著特征之一是 “理性预期” 假设 —— 而Et ...

【CDA干货】Python 提取 TIF 中地名的完整指南

【CDA干货】Python 提取 TIF 中地名的完整指南
2025-09-17
Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— 这直接决定了后续的技术方案。两种核心形式的差异如下: 地名存在形式 适用 TIF 类 ...

【CDA干货】Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用

【CDA干货】Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用
2025-09-16
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频痛点 ——Excel 表中的空白单元格、“N/A” 标记或格式错误,导入后常会转化为 pandas ...

【CDA干货】深入解析卡方检验与 t 检验:差异、适用场景与实践应用

【CDA干货】深入解析卡方检验与 t 检验:差异、适用场景与实践应用
2025-09-16
深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “显著” 的核心工具。卡方检验与 t 检验作为两种基础且常用的假设检验方法,常被用于分 ...

CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手

CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手
2025-09-16
CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据库表、CSV 文件)是企业业务数据的 “主流形态”—— 从零售的 “门店销售表” 到金融 ...

【CDA干货】MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化

【CDA干货】MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化
2025-09-15
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的rows列(估算的扫描行数)更是优化器选择执行计划的关键参考 —— 它直接影响优化器对 “ ...

CDA 数据分析师:业务数据分析步骤的落地者与价值优化者

CDA 数据分析师:业务数据分析步骤的落地者与价值优化者
2025-09-12
CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值实现依赖 “标准化步骤 + 专业化执行” 的双重保障。然而,多数企业在实践中常因 “步 ...

【CDA干货】用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南

【CDA干货】用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南
2025-09-11
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验” 的核心纽带 —— 例如订单金额的计算规则、用户等级的判定标准、库存扣减的触发条 ...

OK
客服在线
立即咨询