cda

数字化人才认证

首页 > 行业图谱 >

CDA 数据分析师:决策树分析实战指南 —— 可解释性建模与业务规则提取核心工具

CDA 数据分析师:决策树分析实战指南 —— 可解释性建模与业务规则提取核心工具
2025-11-06
在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户是否流失并明确流失原因”“判断客户是否办理贷款并提炼审批规则”。这类问题需要模型 ...

【CDA干货】卡方检验 P 值与 OR 值:从关联判断到强度量化的互补逻辑

【CDA干货】卡方检验 P 值与 OR 值:从关联判断到强度量化的互补逻辑
2025-11-05
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是两个高频但易混淆的指标:有人误将 “P 值小” 等同于 “关联强度大”,也有人忽略 P ...

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例
2025-11-04
在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升收入、优化体验” 的隐性规律。但数据挖掘并非 “拿到数据就建模” 的无序过程,需遵循 ...

【CDA干货】DDPM 模型 loss 多少合适?从原理到实操的科学评估指南

【CDA干货】DDPM 模型 loss 多少合适?从原理到实操的科学评估指南
2025-11-04
在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算合适?” 与分类任务(如 ImageNet 分类,验证集 loss 低于 0.3 可认为效果优秀)或回 ...

【CDA干货】从啤酒与尿布到精准预测:关联规则的商业魔力

【CDA干货】从啤酒与尿布到精准预测:关联规则的商业魔力
2025-11-03
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后、跨越直觉的关联逻辑。这个诞生于 20 世纪 90 年代的经典案例,不仅让关联规则技术风 ...

【CDA干货】MySQL 按顺序计数:缺失数据补全与占位符填充实战指南

【CDA干货】MySQL 按顺序计数:缺失数据补全与占位符填充实战指南
2025-10-31
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品编号统计库存”。但实际业务中,常因 “某时间段无业务”“某序号无对应数据” 导致查 ...

【CDA干货】班级规模与平均成绩:相关系数计算全流程(Excel+Python 分步演示)

【CDA干货】班级规模与平均成绩:相关系数计算全流程(Excel+Python 分步演示)
2025-10-30
为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数据准备→系数选择→计算实操→结果解读” 的全流程(含 Excel/Python 工具演示),同时 ...

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具
2025-10-30
对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强度与方向,为决策提供数据支撑” 的核心工具。比如业务想知道 “用户消费频次是否影响 ...

【CDA干货】Excel 辅助 K-Means 聚类实操手册

【CDA干货】Excel 辅助 K-Means 聚类实操手册
2025-10-29
这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透视图本身无法直接执行聚类分析,它是 “数据汇总与可视化工具”,而聚类分析是需要算法 ...

CDA 数据分析师:方差分析(ANOVA)与 F 检验实战指南 —— 验证多组数据差异的科学方法

CDA 数据分析师:方差分析(ANOVA)与 F 检验实战指南 —— 验证多组数据差异的科学方法
2025-10-29
在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显著差异”“4 种促销方案的转化效果是否不同”。这类问题无法用两组对比的 t 检验解决 ...

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南
2025-10-28
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的有效性、模型的预测精度才能得到保障。但实际业务中,大量数据呈现 “左偏分布”(左 ...

【CDA干货】JMP 绘制箱线图:从数据分布可视化到深度统计分析

【CDA干货】JMP 绘制箱线图:从数据分布可视化到深度统计分析
2025-10-28
箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分析、市场调研等领域的 “基础分析工具”。而 JMP 作为专业的统计分析软件,不仅能快速 ...

CDA 数据分析师:列联表分析与卡方检验实战指南 —— 破解分类变量的关联密码

CDA 数据分析师:列联表分析与卡方检验实战指南 —— 破解分类变量的关联密码
2025-10-28
在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式偏好”“会员等级是否与复购意愿相关”。这类问题的核心解决方案,正是 “列联表分析 ...

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法
2025-10-27
对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转化为可验证的统计假设,通过数据排除随机波动,得出可靠结论” 的核心技能。例如,当业 ...

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术
2025-10-23
在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真实状态(如无人机的位置与速度、化工反应釜的温度与压力、汽车的行驶轨迹)。卡尔曼滤 ...

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”
2025-10-23
在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技巧(分析模型),也无法烹制出符合要求的佳肴(可靠结论)。据行业调研显示,CDA(Cert ...

【CDA干货】MySQL 更新数据对读操作的影响:原理与实践分析

【CDA干货】MySQL 更新数据对读操作的影响:原理与实践分析
2025-10-22
在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否”,而是取决于 MySQL 的事务隔离级别、锁机制以及读操作的类型。本文将从底层原理出发 ...

CDA 数据分析师:数据整合实战指南 —— 打破数据孤岛,构建业务全景视图

CDA 数据分析师:数据整合实战指南 —— 打破数据孤岛,构建业务全景视图
2025-10-22
在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散在交易平台、支付系统、物流后台,这些碎片化数据无法直接支撑 “用户生命周期价值分析 ...

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法
2025-10-21
在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特征(如 “用户 ID”“无效时间戳”),既能降低后续建模的计算成本(如减少 50% 特征可 ...

CDA 数据分析师:数据读取实战指南 —— 筑牢数据分析的 “第一关”

CDA 数据分析师:数据读取实战指南 —— 筑牢数据分析的 “第一关”
2025-10-21
在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Certified Data Analyst)数据分析师而言,数据读取是 “分析质量把控的第一关”:若读取 ...

OK
客服在线
立即咨询