
上课时间:2018年12月15-18日(四天连续)12月15-16日、22-23日(四天周末)
上午9:30-12:00,下午13:30-17:00
上课地点:北京:北京市海淀区厂洼街3号丹龙大厦
SAS技术与岗位需求零距离,使学员能够快速有效的了解和处理企业数据要求。
(1)数据管理。企业的数据收集主要涉及3个方面:原始数据录入、数据文件读入和数据库的访问,这些我们将在前三节具体介 绍,这里以实际企业要求为背景,强调学员的上机动手实践能力。
a、数据获取。
企业需求: 数据库访问、外部数据文件读入、
案例分析: 访问db2、oracle、teradata等数据库、以及不同格式文件的导入,如spss、excel、stata等软件的数据文件。
b、数据管理。
企业需求: 对大型数据进行编码、清理、转换。
案例分析: 介绍SAS/base的编程技术
1)data步
#文件操作语句: 数据的访问、整合、输出
Input、put、File、Set、Merge、Infile
#运行语句: 程序运行
赋值和累加语句、Stop、abort、Where、output、Call
#控制语句: 控制程序的运行
Do、If、Return、Go to、Link、Continue、leave、select(do)
#信息语句: 数据集信息管理
Array、Informat、Format、Drop和keep、Retain、Attrib
#数据库语言SAS/SQL:汇总、检索数据
c、数据探索和报表呈现。
企业需求: 对企业级数据进行探索,主要涉及图表的使用。
案例分析: 企业绩效文件,如何生成美观清晰的报告。
1)Means、Standard Univariate描述变量信息。
2)insight的数据探索过程。
3)SAS的tabulate制表过程绘制精美表格。
d、SAS高级程序语言宏程序
企业需求: 宏程序可以增强普通程序的使用效率,减少重复性质作业的工作量、应用十分广泛,像企业日常分析流程、
大数据分析等。
案例分析: 企业日常分析流程的程序代码优化。
(2)数据处理
a、相关与差异分析:corr、cancorr、anova。
企业需求: 企业往往需要探索影响企业效率的因素间的相关关系,这是最基础的过程,并在此基础上了解存在的差异。
案例分析: 产品合格率的相关与差异分析。
b、线性与广义线性预测:reg、logistic、genmod。
企业需求: 1)探索影响企业效率的因素,并进一步预测企业效率;
2)客户违约可能性预测
案例分析: 产品合格率的影响因素及其预测分析与银行客户违约预报。
c、因子分析:factor。
企业需求: 需要抽取影响企业效率的主要因素,进行重点投资。
案例分析: 客户购买力信息研究
d、聚类分析:varclus。
企业需求: 需要了解购买产品的客户信息
案例分析: 客户购买力信息研究
e、生存分析:phreg。
企业需求: 研发新产品的使用周期,能够缩短投入成本,并可以有效的预期市场使用率。
案例分析: 产品耐用性研究。
f、对应分析:corresp。
企业需求: 定性资料的数据大量存在,尤其是多分类的情况。
案例分析: 女性购物信息的关联度研究。
g、稳健模型:robustreg。
企业需求: 企业中大量的实验经济研究可以大幅减少成本投入。
案例分析: 管理特征与员工胜任力的关系调查。
(3)SAS/EM模块:执行数据挖掘
企业需求: 企业中,需要合理优化产品、人力、服务间的关系,而这些特征多大存以数据形式。在面对海量的数据信息时,
如何才能挖掘出有用的信息,
那么SAS/EM可以有效的帮助分析人员快速的探索出数据背后的商业价值。
案例分析1: 电商客户信息调查的数据分析流程;
案例分析2: 耐用消费品预期销售的序列预报;
案例分析3: 用户体验的文本信息关联度分析。
讲师介绍
丁亚军、 数据分析总监,任职于南京上度市场咨询有限公司,SAS、SPSS统计学讲师,中国学习路径图国际中心技术顾问。曾参与2012国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核等大型数据处理项目,具有丰富的数据处理经验
培训优惠及注意事项
(1)赠送SAS数据统计分析师视频课程。
(2)现场班老学员可以享受9折优惠。
(3)同一机构3人以上报名,9折优惠。
(4)同一机构6人以上报名,8折优惠。
(5)赠送1000论坛币
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08