
社会网络分析(SNA) 是一套规范的对社会关系与结构进行分析的方法,社会网络分析的对象是不同的社会行动者内在联系而构成的网络结构。
社会网络分析思想最早起源于20世纪30年代西方的心理学和人类学研究。
社会网络分析主要沿着下面三个大的方向进行发展:
(1) 社会计量学派运用图论方法对社会网络分析做出了杰出的贡献。
(2) 20世纪30年代的哈佛学派致力于研究人际模式和"团伙"形式。
(3) 20世纪50年代,曼彻斯特学派进行了大量的社会网络研究,他们把社会网络分析技术运用到了人际关系上。
20世纪70年代以后,新哈佛学派在社会网络分析方面做出了巨大的贡献,他们逐步的完善了社会网络分析这种独特的研究方法。
自20世纪90年代以来,随着计算机技术的不断发展和网络分析理论研究的深入,社会网络分析的模型得到了进一步的改进,社会网络分析跨越了传统的学科界限从而越来越多的运用到了各个领域。社会网络分析逐渐成为了一种跨学科的研究方法。
社会网络分析的意义:
通过对网络中各种关系进行客观的定量分析为实证研究提供量化的检验工具。
社会网络分析是定性和定量的桥梁,它对大量的图表数据进行定量分析得出定性的结论。
社会科学研究的对象应是社会结构,而不是个体。通过研究网络关系,有助于把个体间关系、“微观”网络与大规模的社会系统的“宏观”结构结合起来。故英国学者J•斯科特指出:“社会网络分析已经为一种关于社会结构的新理论的出现奠定了基础。”
从零基础掌握社会网络分析,使用Python作为载体, 结合理论知识实际操作,
使学员不仅理解社会网络分析的计算思维方法, 同时掌握实际计算技能:
社会网络分析思想与应用现场班
培训时间:2019年9月13-14日 (周末两天)
培训地点:北京市海淀区丹龙大厦
培训费用:2000元 /1700元(学生价, 仅限全日制本科及硕士在读)
授课安排:上午9:00-12:00,下午1:30-4:30,答疑4:30-5:00
讲师介绍:
张忠元, 理学博士, 中央财经大学教授, 博士生导师, 中国计算机学会高级会员, 果壳网科学顾问。
主要研究兴趣在复杂网络分析和数据挖掘. 在Data Mining and Knowledge Discovery,Physical Review E, EPL, Knowledge and Information Systems, Scientific Reports, 中国科学等国内外著名期刊上发表学术论文十余篇。
爱思唯尔杰出审稿人, 担任Data Mining and Knowledge Discovery,Physica A, Management Science等著名期刊的匿名审稿人。
课程目的:
1. 希望大家经过两天的学习, 能对基本的社会网络分析理论和实际应用有所掌握, 同时掌握Python分析网络数据的基本技能;
2. 希望学员能够理解大量顶级期刊上相关领域的研究, 以期为后续学习和研究打下宽厚坚实的基础。
课程大纲:
第1讲(3小时)
1. 欧拉七桥问题(0.5小时)
2. 图论的发展历史(0.25小时)
3. 社会网络分析的发展历史(0.25小时)
4. 图论的现状和主要关注的问题(2小时)
第2讲(2.5小时)
1. Python编程的基础知识(0.5小时)
2. 图论相关编程实践(0.5小时)
3. 社会网络分析的现状和主要关注的问题(0.25小时)
4. 社会网络的小世界性质(0.5小时)
5. ER、WS、BA网络生成模型(0.5小时)
6. 其它生成模型, 产生具有特定拓扑结构性质的网络 (0.25小时)
7. 使用Python进行实操生成网络
第3讲(3.5小时)
1. 社会网络拓扑结构的稳健性和易感性(0.5小时)
2. 社会网络的同配性概念和计算(0.25小时)
3. 弱连边的强度(0.25小时)
4. 社会网络点的中心性(0.5小时)
5. 社会网络的社团结构探测: 方法和评价(0.5小时)
6. 链路预测(0.5小时)
7. 符号网络、多层网络和含时网络分析(0.5小时)
以上均使用python实际操作
第4讲(3小时)
1. 社会网络上的博弈论(0.5小时)
2. SI、SIS、SIR模型 (0.5小时)
3. 线性阈值模型、级联模型(0.25小时)
4. 以上模型的性质, 关系和区别 (0.25小时)
5. 以上模型的python实操 (0.25小时)
6. 案例、文献阅读、机动、互动和答疑时间(1小时)
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
报名流程:
1,点击“https://www.cda.cn/kecheng/67.html”,填写报名信息提交;
2,通过订单支付(需要刷卡或者对公转账请与我们联系);
3,开课前一周发送资料及交通住宿指南;
4,现场领取发票及开课通知。
联系方式:
魏老师
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29