
社会网络分析(SNA) 是一套规范的对社会关系与结构进行分析的方法,社会网络分析的对象是不同的社会行动者内在联系而构成的网络结构。
社会网络分析思想最早起源于20世纪30年代西方的心理学和人类学研究。
社会网络分析主要沿着下面三个大的方向进行发展:
(1) 社会计量学派运用图论方法对社会网络分析做出了杰出的贡献。
(2) 20世纪30年代的哈佛学派致力于研究人际模式和"团伙"形式。
(3) 20世纪50年代,曼彻斯特学派进行了大量的社会网络研究,他们把社会网络分析技术运用到了人际关系上。
20世纪70年代以后,新哈佛学派在社会网络分析方面做出了巨大的贡献,他们逐步的完善了社会网络分析这种独特的研究方法。
自20世纪90年代以来,随着计算机技术的不断发展和网络分析理论研究的深入,社会网络分析的模型得到了进一步的改进,社会网络分析跨越了传统的学科界限从而越来越多的运用到了各个领域。社会网络分析逐渐成为了一种跨学科的研究方法。
社会网络分析的意义:
通过对网络中各种关系进行客观的定量分析为实证研究提供量化的检验工具。
社会网络分析是定性和定量的桥梁,它对大量的图表数据进行定量分析得出定性的结论。
社会科学研究的对象应是社会结构,而不是个体。通过研究网络关系,有助于把个体间关系、“微观”网络与大规模的社会系统的“宏观”结构结合起来。故英国学者J•斯科特指出:“社会网络分析已经为一种关于社会结构的新理论的出现奠定了基础。”
从零基础掌握社会网络分析,使用Python作为载体, 结合理论知识实际操作,
使学员不仅理解社会网络分析的计算思维方法, 同时掌握实际计算技能:
社会网络分析思想与应用现场班
培训时间:2019年9月13-14日 (周末两天)
培训地点:北京市海淀区丹龙大厦
培训费用:2000元 /1700元(学生价, 仅限全日制本科及硕士在读)
授课安排:上午9:00-12:00,下午1:30-4:30,答疑4:30-5:00
讲师介绍:
张忠元, 理学博士, 中央财经大学教授, 博士生导师, 中国计算机学会高级会员, 果壳网科学顾问。
主要研究兴趣在复杂网络分析和数据挖掘. 在Data Mining and Knowledge Discovery,Physical Review E, EPL, Knowledge and Information Systems, Scientific Reports, 中国科学等国内外著名期刊上发表学术论文十余篇。
爱思唯尔杰出审稿人, 担任Data Mining and Knowledge Discovery,Physica A, Management Science等著名期刊的匿名审稿人。
课程目的:
1. 希望大家经过两天的学习, 能对基本的社会网络分析理论和实际应用有所掌握, 同时掌握Python分析网络数据的基本技能;
2. 希望学员能够理解大量顶级期刊上相关领域的研究, 以期为后续学习和研究打下宽厚坚实的基础。
课程大纲:
第1讲(3小时)
1. 欧拉七桥问题(0.5小时)
2. 图论的发展历史(0.25小时)
3. 社会网络分析的发展历史(0.25小时)
4. 图论的现状和主要关注的问题(2小时)
第2讲(2.5小时)
1. Python编程的基础知识(0.5小时)
2. 图论相关编程实践(0.5小时)
3. 社会网络分析的现状和主要关注的问题(0.25小时)
4. 社会网络的小世界性质(0.5小时)
5. ER、WS、BA网络生成模型(0.5小时)
6. 其它生成模型, 产生具有特定拓扑结构性质的网络 (0.25小时)
7. 使用Python进行实操生成网络
第3讲(3.5小时)
1. 社会网络拓扑结构的稳健性和易感性(0.5小时)
2. 社会网络的同配性概念和计算(0.25小时)
3. 弱连边的强度(0.25小时)
4. 社会网络点的中心性(0.5小时)
5. 社会网络的社团结构探测: 方法和评价(0.5小时)
6. 链路预测(0.5小时)
7. 符号网络、多层网络和含时网络分析(0.5小时)
以上均使用python实际操作
第4讲(3小时)
1. 社会网络上的博弈论(0.5小时)
2. SI、SIS、SIR模型 (0.5小时)
3. 线性阈值模型、级联模型(0.25小时)
4. 以上模型的性质, 关系和区别 (0.25小时)
5. 以上模型的python实操 (0.25小时)
6. 案例、文献阅读、机动、互动和答疑时间(1小时)
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
报名流程:
1,点击“https://www.cda.cn/kecheng/67.html”,填写报名信息提交;
2,通过订单支付(需要刷卡或者对公转账请与我们联系);
3,开课前一周发送资料及交通住宿指南;
4,现场领取发票及开课通知。
联系方式:
魏老师
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08