京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS正态分布以及方差齐性检验以及Wilcox检验
方差分析、t-test等基本上都是我们常用的工具,但是还是有不少小伙伴,特别是刚入坑的小伙伴分不清楚,今天是说几句,老司机也可以收藏给以后的师弟师妹。第二篇关于三种t检验的适用情况说明(单一样本t检验,配对样本t检验,独立样本t检验),是我几天前看到采集而来,一并放到这里做个简单的汇总。
t检验要求数据正态分布以及方差齐性。一般来说一些常见的表型数据符合正态分布以及方差齐性的要求。但对于其他类型的数据,就不一定满足这两点了。所以在进行t检验之前,首先要进行数据的正态检验以及方差齐性检验。在SPSS中的具体操作如下:
输入的数据格式如下:
1、在菜单栏选择“分析”-“描述统计”-“探索”,如下图。
2、将分组信息group添加到“因子列表”,其他数据添加到“因变量列表”,如下图。
3、设置“统计”选项卡,所有勾选的都选上即可,如下图。
4、设置“图(T)”选项卡,设置如下图,按下图设置之后点击“继续”。
5、完成上述设置之后,点击“确定即可”,稍微等待即可出现结果。
6、这一步会出来很多统计结果,下面只介绍我们关心的正态分布检验和方差齐性检验,正态分布检验结果如下表。
从上表我们看出,显著性(p值)远小于0.001,即显著,则能够拒绝他们服从正态分布的假设。即该组数据不符合正态分析,也就不能使用t检验和方差分析(ANOVA),不管此时方差是否齐性均不能使用上述两种检验。
其实数据是否符合正态分布我们在正方图或Q-Q图上基本上也能看出,如下图,均不是正态分布。数据正态分布时,数据点基本沿直线两侧分布。
7、如果数据符合符合正态分布下面就要进行方差齐性检验,结果如下图。
从上表我们可以看到其显著性(P<0.001)非常小,这说明我们要拒绝他们总体方差相等的假设,即此时方差不齐,不能使用t检验以及方差分析。
那么此时应该使用什么统计方法呢,一般时使用Mann-Whitney U 秩和检验(Wilcox检验),或者Kruskal-Wallis检验。两组数据比较使用Wilcox检验,而多组数据比较使用Kruskal-Wallis检验。切记需要满足的条件是:在进行多个群组之间比较时,因为群组不满足正态分布而不能使用ANOVA多比较,那么你可以使用Kruskal-Wallis检验,当只有两组时,使用基于两样本的Wilcox检验。
那么在SPSS里该如何进行Kruskal-Wallis检验和Wilcox检验分析呢?此部分暂时只说Wilcox检验分析,其实Kruskal-Wallis检验在SPSS里操作也是类似的,只不过Kruskal-Wallis检验适用于多重比较。分析入口如下。
点击"确定"之后,接下来会弹出一个设置页面,如下图,该页面包含3个子页面即“目标”,“字段”,“设置”。其中目标这个可以保持默认设置,字段以及设置的页面如下。
按照上述页面设置之后,点击运行即可。最后结果如下图所示。
这是输出的主要结果,零假设是“基因表达水平的分布在两组之间相同”,除root_z13之外,P<0.05,故拒绝原假设,认为基因的表达水平在两组之间有统计学差异。而root_z13则没有显著的统计学差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08