
在大数据人才时代,懂得跨越行业界限,越过界限,倾听数据的声音,用数据来指导和引领未来。
分会场1:大数据与生物医疗
大数据是改变行业的关键节点,随着生物科技和医疗技术的迅猛发展,生物医疗行业的大数据急剧膨胀。与其它数据行业不同,生物医疗行业的数据呈现分散,破碎,低透明度,以及意义尚等解析等特征。时间推移,生物医疗数据不断累积,数据价值越来越重。加上中国健康人群及患者数量庞大,就越发会产生超海量的数据网络。在大数据时代,生物医疗的未来将何去何从?
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力。
继数字时代、信息时代、互联网时代后,人类又进入了大数据时代。因互联网的迅猛发展,“大”量数据的获取、聚集、存储、传输、处理、分析等变得越来越便捷,大数据逐渐发展成为一门新学科、一套新学说以及一种分析与解决问题的新方法、新手段。互联网大数据分论坛的几位分享嘉宾结合自己的亲身实际,讲帮我们解读互联网在大数据的指引下的未来。
大数据对于电商发展的作用地位越来越突出,电商纷纷开始重视对大数据的采集和挖掘。尤其随着今天移动互联网的变化,消费习惯也在发生改变,屏幕变小了,数据变大了,大数据更有理由走向前台。一个优秀的电商企业如何在大数据上拔得头筹?电商大数据的未来将会如何?
正相较于传统金融,大数据金融使得抵押贷款模式逐步被信用贷款模式所取代。基于大数据金融的优势,电商、电信运营商、钢铁企业、IT企业等等纷纷利用大数据金融涉足金融行业。那么大数据金融和传统的金融行业相比较究竟有哪些神奇之处?金融大数据的未来又将何去何从?
大数据和人工智能是今天计算机学科的两个重要的分支。近年来,有关大数据和人工智能这两个领域所进行的研究一直从未间断。其实,大数据和人工智能的联系千丝万缕。首先,大数据技术的发展依靠人工智能,因为它使用了许多人工智能的理论和方法。其次,人工智能的发展也必须依托大数据技术,需要大数据进行支撑。大数据时代背景下,人工智能将何去何从,几位嘉宾邀您共同探讨大数据与人工智能的未来。
大数据的第一要务就是解决业务问题,从一定程度上来讲就是用数据技术手段来拓展和优化业务。对外,要有清晰的商业模式构想;对内,要有清晰的场景,能用大数据手段提升效率。而BI的应用远大于大数据应用。大数据相对于传统BI,也不仅是简单的PLUS的关系,它涉及了思想、工具和人员深层次的变革,BI人员也应当正视大数据,要确保BI的传承,还要能顺应大数据时代的发展,数据可视化与商业BI在大数据时代的未来将面临怎样的跌宕起伏?
随着大数据的快速发展和在各个领域中的应用越来越广泛,交通大数据的研究非常活跃,研究的程度也越来越深入,数据技术正在为交通运行管理提供便利,对于促进交通运行的整体效率以及安全性都有着非常重要的意义。交通旅游行业对“大数据”应用的重视逐渐加强,但是大数据应该如何应用于交通旅游业?交通旅游业的发展在大数据的推动下会如何?
目前,全球已进入大数据时代,大数据正以一种革命风暴的姿态闯入人们视野,其技术和市场在快速发展,而驾驭大数据的呼声则一浪高过一浪。如何运用大数据帮助投资者提供更为专业化的服务,成为有效的投资者抓手?如何运用大数据来缓解投资顾问服务覆盖不足的缺陷?大数据市场支持下的智慧投资将如何发展?
大数据是一种新一代的技术和架构,具备高效率的捕捉、发现和分析能力,能够经济地从类型繁杂、数量庞大的数据中挖掘出色价值。而随着互联网的高速发展,用户数量和数据规模急剧扩张,单一的数据库服务已无法满足当前应用的需求。数据库与技术实战应该如何在大数据时代跟上潮流?
CDA秉承着总结凝练最先进的商业数据分析实践为使命,明晰各类数据分析从业者的知识体系为职责,旨在加强全球范围内正规化、科学化、专业化的大数据及数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。CDA数据分析师与拉勾达成的数据分析师招聘专场就是本次活动的另外一个亮点,但是CDA数据分析师依旧奔波在路上……
报名链接:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08