京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据人才时代,懂得跨越行业界限,越过界限,倾听数据的声音,用数据来指导和引领未来。
分会场1:大数据与生物医疗
大数据是改变行业的关键节点,随着生物科技和医疗技术的迅猛发展,生物医疗行业的大数据急剧膨胀。与其它数据行业不同,生物医疗行业的数据呈现分散,破碎,低透明度,以及意义尚等解析等特征。时间推移,生物医疗数据不断累积,数据价值越来越重。加上中国健康人群及患者数量庞大,就越发会产生超海量的数据网络。在大数据时代,生物医疗的未来将何去何从?
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力。
继数字时代、信息时代、互联网时代后,人类又进入了大数据时代。因互联网的迅猛发展,“大”量数据的获取、聚集、存储、传输、处理、分析等变得越来越便捷,大数据逐渐发展成为一门新学科、一套新学说以及一种分析与解决问题的新方法、新手段。互联网大数据分论坛的几位分享嘉宾结合自己的亲身实际,讲帮我们解读互联网在大数据的指引下的未来。
大数据对于电商发展的作用地位越来越突出,电商纷纷开始重视对大数据的采集和挖掘。尤其随着今天移动互联网的变化,消费习惯也在发生改变,屏幕变小了,数据变大了,大数据更有理由走向前台。一个优秀的电商企业如何在大数据上拔得头筹?电商大数据的未来将会如何?
正相较于传统金融,大数据金融使得抵押贷款模式逐步被信用贷款模式所取代。基于大数据金融的优势,电商、电信运营商、钢铁企业、IT企业等等纷纷利用大数据金融涉足金融行业。那么大数据金融和传统的金融行业相比较究竟有哪些神奇之处?金融大数据的未来又将何去何从?
大数据和人工智能是今天计算机学科的两个重要的分支。近年来,有关大数据和人工智能这两个领域所进行的研究一直从未间断。其实,大数据和人工智能的联系千丝万缕。首先,大数据技术的发展依靠人工智能,因为它使用了许多人工智能的理论和方法。其次,人工智能的发展也必须依托大数据技术,需要大数据进行支撑。大数据时代背景下,人工智能将何去何从,几位嘉宾邀您共同探讨大数据与人工智能的未来。
大数据的第一要务就是解决业务问题,从一定程度上来讲就是用数据技术手段来拓展和优化业务。对外,要有清晰的商业模式构想;对内,要有清晰的场景,能用大数据手段提升效率。而BI的应用远大于大数据应用。大数据相对于传统BI,也不仅是简单的PLUS的关系,它涉及了思想、工具和人员深层次的变革,BI人员也应当正视大数据,要确保BI的传承,还要能顺应大数据时代的发展,数据可视化与商业BI在大数据时代的未来将面临怎样的跌宕起伏?
随着大数据的快速发展和在各个领域中的应用越来越广泛,交通大数据的研究非常活跃,研究的程度也越来越深入,数据技术正在为交通运行管理提供便利,对于促进交通运行的整体效率以及安全性都有着非常重要的意义。交通旅游行业对“大数据”应用的重视逐渐加强,但是大数据应该如何应用于交通旅游业?交通旅游业的发展在大数据的推动下会如何?
目前,全球已进入大数据时代,大数据正以一种革命风暴的姿态闯入人们视野,其技术和市场在快速发展,而驾驭大数据的呼声则一浪高过一浪。如何运用大数据帮助投资者提供更为专业化的服务,成为有效的投资者抓手?如何运用大数据来缓解投资顾问服务覆盖不足的缺陷?大数据市场支持下的智慧投资将如何发展?
大数据是一种新一代的技术和架构,具备高效率的捕捉、发现和分析能力,能够经济地从类型繁杂、数量庞大的数据中挖掘出色价值。而随着互联网的高速发展,用户数量和数据规模急剧扩张,单一的数据库服务已无法满足当前应用的需求。数据库与技术实战应该如何在大数据时代跟上潮流?
CDA秉承着总结凝练最先进的商业数据分析实践为使命,明晰各类数据分析从业者的知识体系为职责,旨在加强全球范围内正规化、科学化、专业化的大数据及数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。CDA数据分析师与拉勾达成的数据分析师招聘专场就是本次活动的另外一个亮点,但是CDA数据分析师依旧奔波在路上……
报名链接:

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26