
SPSS分析技术:单因素方差分析结果的模型解读
SPSS的方差分析过程就是以方差分析模型的形式进行计算和结果输出的。下面我们将以单因素方差分析为例,介绍单因素方差分析结果的模型函数解读。帮助大家充分理解方差分析的深层模型含义。首先回顾方差分析的常用步骤:
1、方差齐性检验;
2、计算各项平方和与自由度;
3、列出方差分析表,进行F检验,并依据F值对应的p值做出判断;
4、事后多重比较;
为了便于理解,先回顾单因素方差分析模型。假设因素为职业;因变量为工资收入,那么单因素方差分析模型可以表示为:
案例分析
我们直接用SPSS进行单因素方差分析,并对结果进行模型解读。某汽车4S店希望比较4个品牌轮胎的耐磨性,分别从4个品牌的轮胎中抽取了5个样品,在相同的转速下磨损相同时间,测量其被磨损的深度(mm),数据如下图所示:
操作步骤
1、选择菜单【分析】-【一般线性模型】-【单变量】。如下图所示,在跳出的对话框中,将磨损深度选为因变量,将轮胎品牌选为固定因子。点击【事后多重检验】按钮,在跳出的对话框中,将轮胎品牌选入事后检验的框内,表示要对不同品牌的轮胎磨损程度进行两两比较,确定磨损程度的高低。在假定方差齐性区域选择LSD和S-N-K作为事后多重检验的检验方式。
2、点击【选项】按钮;将轮胎品牌选入显示平均值框;在输出区域选择描述统计、同质性检验、参数估计和对比系数矩阵。
3、点击确定,输出结果。
结果的模型解读
1、描述性统计结果;
上表是4组数据的描述性统计结果,它给出了样本均数和标准差。从标准差可知除D品牌较小外,其余三组标准差非常接近,至于有无方差不齐的问题需要看随后的齐性检验结果。
上表是方差齐性检验结果,用来检验4组样本的方差是否存在显著性差异。从结果可知,Levene方差齐性检验的F统计量为1. 292,在当前自由度下对应的P值为0. 311,可以认为4组样本所代表总体的方差齐。
2、方差分析表
第一行“修正的模型”进行的是整个方差分析模型的检验,其原假设为:模型中所有的因素均对因变量无影响,所有的因素系数均等于0。F值为24.550,P<0. 001,因此所用的模型有统计学意义,其中有的因素系数不等于0。由于当前方差分析模型中只有轮胎品牌这一个因素,因此该结论等于说不同品牌轮胎的磨损有差异。
第二行是截距,其原假设为u=0(回顾上方方差分析模型),即不考虑品牌时,所有轮胎的平均磨损深度等于0,显然检验结果拒绝了该假设,但由于截距在这里没有实际意义,可以忽略。
第三行开始对模型中各因素进行检验,由于本模型中只有一个因素,因此只能见到对因素轮胎品牌的检验,其原假设为:轮胎品牌这一因素均对轮胎磨损深度没有影响,因素系数等于0(回顾方差分析模型)。检验F值和P值均与第一行的检验结果相同,结论也完全等价。
3、模型参数的估计
上表是模型各参数的估计值,截距就是总的平均磨损深度,估计值为2.572,表示不考虑品牌时,轮胎的平均磨损深度为2.572mm。从第二行开始就是对各品牌参数的估计,四个轮胎品牌对应4个参数,由于这些参数之间存在数量上的关联,必须要加上一定的限制条件才能进行估计,在本例中,模型默认将编号取值最高的品牌D作为参照水平,这相当于强迫a4=0,另外三个品牌参数的估计值和检验结果实际上就等于该品牌和品牌D相比的结果,例如,品牌A的参数等于A组均值减去D组均值2.41-2.572=- 0.162。可见A,B,C的参数均小于0且有统计学意义,即它们的磨损深度均小于品牌D。
4、LSD事后多重检验;也称为两两比较;
LSD法的输出结果实际上是要求将各组均值和一个参照组进行比较。SPSS假设每一个轮胎品牌都有可能成为参照,让其他组都和该参照组进行比较。表中给出了两个轮胎组之间的平均值差异、差值的标准误,95%置信区间以及检验的P值。I表示参照组,J表示对比组。检验结果显示轮胎品牌C和D都与另外三个轮胎品牌有差异,而轮胎品牌A和B之间没有差异。
5、S-N-K事后多重检验;
LSD法的分析结果并不太容易阅读,相对而言,SNK法的两两比较结果则要清楚得多。首先SNK会将各组按照平均值大小排序,上表是按照CBAD的顺序进行排序;随后,表格将四个轮胎品牌分成3个子集,同一子集内的两组平均值两两无差别。第一子集仅由品牌C组成,是磨损深度最低的子集;第二子集由品牌B和A组成,磨损深度居中;第三子集由品牌D组成,磨损情况最为严重。最后一行给出的是子集内部各品牌进行比较的结果,因第一子集和第四自己都仅有一个品牌,因此其p值等于1,第二子集中品牌B和A比较的P值等于0.926,表示两品牌轮胎的磨损深度没有显著性差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08