
SPSS分析技术:单因素方差分析结果的模型解读
SPSS的方差分析过程就是以方差分析模型的形式进行计算和结果输出的。下面我们将以单因素方差分析为例,介绍单因素方差分析结果的模型函数解读。帮助大家充分理解方差分析的深层模型含义。首先回顾方差分析的常用步骤:
1、方差齐性检验;
2、计算各项平方和与自由度;
3、列出方差分析表,进行F检验,并依据F值对应的p值做出判断;
4、事后多重比较;
为了便于理解,先回顾单因素方差分析模型。假设因素为职业;因变量为工资收入,那么单因素方差分析模型可以表示为:
案例分析
我们直接用SPSS进行单因素方差分析,并对结果进行模型解读。某汽车4S店希望比较4个品牌轮胎的耐磨性,分别从4个品牌的轮胎中抽取了5个样品,在相同的转速下磨损相同时间,测量其被磨损的深度(mm),数据如下图所示:
操作步骤
1、选择菜单【分析】-【一般线性模型】-【单变量】。如下图所示,在跳出的对话框中,将磨损深度选为因变量,将轮胎品牌选为固定因子。点击【事后多重检验】按钮,在跳出的对话框中,将轮胎品牌选入事后检验的框内,表示要对不同品牌的轮胎磨损程度进行两两比较,确定磨损程度的高低。在假定方差齐性区域选择LSD和S-N-K作为事后多重检验的检验方式。
2、点击【选项】按钮;将轮胎品牌选入显示平均值框;在输出区域选择描述统计、同质性检验、参数估计和对比系数矩阵。
3、点击确定,输出结果。
结果的模型解读
1、描述性统计结果;
上表是4组数据的描述性统计结果,它给出了样本均数和标准差。从标准差可知除D品牌较小外,其余三组标准差非常接近,至于有无方差不齐的问题需要看随后的齐性检验结果。
上表是方差齐性检验结果,用来检验4组样本的方差是否存在显著性差异。从结果可知,Levene方差齐性检验的F统计量为1. 292,在当前自由度下对应的P值为0. 311,可以认为4组样本所代表总体的方差齐。
2、方差分析表
第一行“修正的模型”进行的是整个方差分析模型的检验,其原假设为:模型中所有的因素均对因变量无影响,所有的因素系数均等于0。F值为24.550,P<0. 001,因此所用的模型有统计学意义,其中有的因素系数不等于0。由于当前方差分析模型中只有轮胎品牌这一个因素,因此该结论等于说不同品牌轮胎的磨损有差异。
第二行是截距,其原假设为u=0(回顾上方方差分析模型),即不考虑品牌时,所有轮胎的平均磨损深度等于0,显然检验结果拒绝了该假设,但由于截距在这里没有实际意义,可以忽略。
第三行开始对模型中各因素进行检验,由于本模型中只有一个因素,因此只能见到对因素轮胎品牌的检验,其原假设为:轮胎品牌这一因素均对轮胎磨损深度没有影响,因素系数等于0(回顾方差分析模型)。检验F值和P值均与第一行的检验结果相同,结论也完全等价。
3、模型参数的估计
上表是模型各参数的估计值,截距就是总的平均磨损深度,估计值为2.572,表示不考虑品牌时,轮胎的平均磨损深度为2.572mm。从第二行开始就是对各品牌参数的估计,四个轮胎品牌对应4个参数,由于这些参数之间存在数量上的关联,必须要加上一定的限制条件才能进行估计,在本例中,模型默认将编号取值最高的品牌D作为参照水平,这相当于强迫a4=0,另外三个品牌参数的估计值和检验结果实际上就等于该品牌和品牌D相比的结果,例如,品牌A的参数等于A组均值减去D组均值2.41-2.572=- 0.162。可见A,B,C的参数均小于0且有统计学意义,即它们的磨损深度均小于品牌D。
4、LSD事后多重检验;也称为两两比较;
LSD法的输出结果实际上是要求将各组均值和一个参照组进行比较。SPSS假设每一个轮胎品牌都有可能成为参照,让其他组都和该参照组进行比较。表中给出了两个轮胎组之间的平均值差异、差值的标准误,95%置信区间以及检验的P值。I表示参照组,J表示对比组。检验结果显示轮胎品牌C和D都与另外三个轮胎品牌有差异,而轮胎品牌A和B之间没有差异。
5、S-N-K事后多重检验;
LSD法的分析结果并不太容易阅读,相对而言,SNK法的两两比较结果则要清楚得多。首先SNK会将各组按照平均值大小排序,上表是按照CBAD的顺序进行排序;随后,表格将四个轮胎品牌分成3个子集,同一子集内的两组平均值两两无差别。第一子集仅由品牌C组成,是磨损深度最低的子集;第二子集由品牌B和A组成,磨损深度居中;第三子集由品牌D组成,磨损情况最为严重。最后一行给出的是子集内部各品牌进行比较的结果,因第一子集和第四自己都仅有一个品牌,因此其p值等于1,第二子集中品牌B和A比较的P值等于0.926,表示两品牌轮胎的磨损深度没有显著性差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22