
这一次,和你解释清楚!
学习SASEG和SPSS中的任何一门都可以完全覆盖CDA一级的认证内容。
所以基于效益最大化原则,如果是完全一张白纸的初学者,建议还是从SPSS入手比较好。之后我会推荐SAS。
【开课信息】
时间:8月06日-8月28日@北京朝阳/远程-基于SPSS
【课程大纲】
CDA课程安排 |
课程 |
大纲简介 |
预期效果 |
第一阶段
|
《数据分析师基础理论》 |
行业分析,常用方法,统计基础,Excel数据分析。 |
零基础入门,掌握数据分析常用方法、基本原理及分析思路 |
第二阶段
|
《数据处理技术》 |
基于SPSS/SAS EG工具手把手教学操作,数据的录入、整理、清洗、处理、分析、输出、解读等。 |
掌握一门专业数据分析软件,会使用软件进行数据处理及分析。 |
第三阶段
|
《数据建模分析》 |
基于SPSS/SAS EG数据建模,方差、回归、分类、主成份、因子、聚类、多元、时间序列等数据分析模型。数据可视化,结果输出及解读。 |
熟悉各模型应用环境,学会自行建模分析,独立完成数据分析工作,并能输出图表解读数据现实意义。 |
第四阶段
|
《案例分析及业务应用》 |
电信,金融,电商,零售等实际案例分析;BI、文本挖掘、大数据、智慧城市等前沿技术。 |
通过真实案例举一反三,熟悉整个数据分析流程;了解前沿技术,增强业务与技术对接能力。 |
【学员对象】
1. 各行业数据分析、数据挖掘基础薄弱从业者
2. 在校数学,经济,计算机,统计等专业教师和学生
3. 经济,医学生物研究院科研人员
4. 数据分析,数据挖掘兴趣爱好者及转行人士
【讲师介绍】
数据分析金牌团队:CDA数据分析研究院讲师团队,大陆、台湾等高校著名教师以及知名企业资深数据分析师
常国珍,会计学博士、社会学硕士,毕业于北京大学人口所,目前就读于北大光华管理学院,SAS公司数据挖掘与统计分析课程讲师。曾就职于方正国际金融事业部和长江商学院投资者研究中心。主持过商业银行数据挖掘平台建设、商业银行信用评分模型的构建与固化等商业项目。参与构建的股票量化投资模型被某大型基金公司采纳,并于2013年九月正式发行。
曹正凤,男,统计学实验师,博士学位,具有十几年统计教学经验。最新研究随机森林遗传算法,参与《大数据背景下基于中国烟草消费需求的供给结构分析研究》项目,《基于大数据整合的空气质量测度方法研究》,项目进入实施阶段。先为CDA基础理论讲师,对于统计学教学有丰富的经验。
翟祥,人民大学统计学博士,北京林业大学管理学院统计系教授,SAS公司骨灰级讲师。长期从事金融、电信、零售行业数据挖掘咨询工作。
徐老师,男,高级数据分析师,具有深厚的数理统计与应用数据分析专业背景,上海某金融机构数据分析部门高级DA,具有八年数据分析、数据挖掘的从业经验,曾就职零售企业、咨询公司等,独立或带团队完成零售、电信、金融等多个大型数据挖掘项目。
丁亚军,男,首席数据分析师,兼职中国学习路径图国际培训中心技术顾问,SAS、SPSS高级统计学讲师。曾参与2012国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核等大型数据处理项目,具有丰富的数据处理经验。
【课程优惠】
1. 全日制在读学生8折优惠
2. 参加过论坛其他现场班老学员9折优惠
3. 同一单位三人及以上报名9折优惠,五人及以上8折优惠
4. 同时报名参加LEVELⅠ和LEVEL Ⅱ享受8折优惠
5. 零基础学员建议同时报名CDA数据分析员课程,立减400元。
【关于证书】
CDA数据分析师等级认证证书
(此证书为CDA中英文等级认证证书Level Ⅰ,全国统考,一年两次,此证书为CDA数据分析师唯一认证证书,可以作为企业事业单位选拔和聘用专业人才的任职参考依据。)
【报名流程】
1.在线填写报名信息
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13