热线电话:13121318867

登录
2020-08-18 阅读量: 943
机器学习中常见的损失函数

机器学习中常见的损失函数

  损失函数是机器学习中常用于优化模型的目标函数,无论是在分类问题,还是回归问题,

都是通过损失函数最小化来求得我们的学习模型的。损失函数分为经验风险损失函数和结构风险损失函数。

经验风险损失函数是指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。

通常表示为:

  

  θ*是我们通过损失函数最小化要求得的参数,一般都是通过梯度下降法来求得

1、0-1损失函数

  0-1损失函数的表达式如下,常见于感知机模型中,预测正确则损失为0,预测错误则损失为1:

  

2、绝对值损失函数

  

3、log对数损失函数  

  对数损失函数最常见的应用就是在逻辑回归中,其表达式如下:

  

4、平方损失函数

  平方损失函数常见于回归问题中,如线性回归,其表达式如下:

  

5、指数损失函数

  指数损失函数常见于Adaboost算法中,其表达式如下:

  

6、Hinge损失函数

  Hinge损失函数常见与SVM中,有点类似于0-1损失函数,不同的是对于分类错误的点,

其损失值不再是固定值1,而是和样本点离超平面的距离有关。其表达式如下;

  

  其中l 是hinge函数,其标准形式如下:

  

  除此之外还有一些不怎么常见的损失函数,比如在GBDT中的Huber损失函数等

原文:https://www.cnblogs.com/jiangxinyang/p/9251196.html

24.3398
2
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子