2020-06-19
                                阅读量:
                                1151
                            
                        统计学:岭回归
                        岭回归是一种改良的最小二乘估计法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于普通的最小二乘法OLS。本质是在自变量信息矩阵的主对角线元素上人为地加入一个非负因子。
当数据之间存在多重共线性(自变量高度相关)时,就需要使用岭回归分析。在存在多重共线性时,尽管最小二乘法(OLS)测得的估计值不存在偏差,它们的方差也会很大,从而使得观测值与真实值相差甚远。岭回归通过给回归估计值添加一个偏差值,来降低标准误差。
                                31.1009
                            
                                3
                            
                                5
                            
                                
                            
                                关注作者
                            
                                    收藏
                                                            评论(0)
                    
发表评论
暂无数据
                        
                        推荐帖子
                    
                0条评论
                        0条评论
                        0条评论
                        
            
                
                
