2020-05-23
阅读量:
1492
Python机器学习中如何理解特征和标签?
以周志华老师在《机器学习》中判断好瓜的问题为例——给你一个西瓜,如何判断出一个它是不是正熟的好瓜?对于人类来说,根据以前的经验,我们首先会从西瓜这个具体的事物中抽取一些有用的信息,比如西瓜的颜色、瓜蒂的形状、敲击的声音等,然后根据一定的规则在这些信息的基础上进行判断————一般情况下我们认为颜色青绿、根蒂蜷缩、敲击浊响的西瓜是好瓜。
上述问题中,西瓜的颜色、瓜蒂的形状、敲击的声音就是特征,而“好瓜”和“坏瓜”这两个判断就是标签。更抽象一点,特征是做出某个判断的证据,标签是结论。
机器学习主要的工作就是提取出有用的特征(比如卖西瓜的人的性别这个特征对判断西瓜是否是好瓜基本是没有用的,就不是一个好的特征),然后根据已有的实例(例如有一堆瓜,里面有好瓜也有坏瓜,并且已经标注(已有标签),也知道这些瓜的颜色、根蒂形状和敲击声音),构造从特征到标签的映射。






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
0条评论