2020-03-18
阅读量:
1497
轮廓系数如何计算的?
轮廓系数(Silhouette Coefficient),是聚类效果好坏的一种评价方式。最早由 Peter J. Rousseeuw 在 1986 提出。它结合内聚度和分离度两种因素。可以用来在相同原始数据的基础上用来评价不同算法、或者算法不同运行方式对聚类结果所产生的影响。
方法:
1,计算样本i到同簇其他样本的平均距离ai。ai 越小,说明样本i越应该被聚类到该簇。将ai 称为样本i的簇内不相似度。
簇C中所有样本的a i 均值称为簇C的簇不相似度。
2,计算样本i到其他某簇Cj 的所有样本的平均距离bij,称为样本i与簇Cj 的不相似度。定义为样本i的簇间不相似度:bi =min{bi1, bi2, ..., bik}
bi越大,说明样本i越不属于其他簇。
3,根据样本i的簇内不相似度a i 和簇间不相似度b i ,定义样本i的轮廓系数:

4,判断:
si接近1,则说明样本i聚类合理;
si接近-1,则说明样本i更应该分类到另外的簇;
若si 近似为0,则说明样本i在两个簇的边界上。
所有样本的s i 的均值称为聚类结果的轮廓系数,是该聚类是否合理、有效的度量。






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
0条评论