2020-02-21
阅读量:
930
怎样理解中心极限定理?
中心极限定理,是指概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。它是概率论中最重要的一类定理,有广泛的实际应用背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象。最早的中心极限定理是讨论重点,伯努利试验中,事件A出现的次数渐近于正态分布的问题。
假设有一个群体,如我们之前提到的清华毕业的人,我们对这类人群的收入感兴趣。怎么知道这群人的收入呢?我会做这样4步:
第1步.随机抽取1个样本,求该样本的平均值。例如我们抽取了100名毕业于清华的人,然后对这些人的收入求平均值。
该样里的100名清华的人,这里的100就是该样本的大小。
有一个经验是,样本大小必须达到30,中心极限定理才能保证成立。
第2步.我将第1步样本抽取的工作重复再三,不断地从毕业的人中随机抽取100个人,例如我抽取了5个样本,并计算出每个样本的平均值,那么5个样本,就会有5个平均值。
这里的5个样本,就是指样本数量是5。
第3步.根据中心极限定理,这些样本平均值中的绝大部分都极为接近总体的平均收入。有一些会稍高一点,有一些会稍低一点,只有极少数的样本平均值大大高于或低于群体平均值。
第4步.中心极限定理告诉我们,不论所研究的群体是怎样分布的,这些样本平均值会在总体平均值周围呈现一个正态分布。






评论(0)


暂无数据
推荐帖子
0条评论
0条评论