热线电话:13121318867

登录
2020-02-19 阅读量: 1808
什么是线性归一化

      这种归一化方法比较适用在数值比较集中的情况,数据点没有因为特征的基本性质而产生较大差异,即确保数据处于同一数量级(同一量纲),提高不同特征数据的可比性。这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。实际使用中可以用经验常量值来替代max和min。

把每个特征向量(特别是奇异样本数据)的值都缩放到相同数值范围。如[0,1]或[-1,1]。最常用的归一化形式就是将特征向量调整为L1范数(就是绝对值相加),使特征向量的数值之和为1。L2范数就是欧几里得之和。

0.9994
3
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子