2019-06-24
阅读量:
760
如何理解线性回归?
如何理解线性回归?
答:线性回归可以这么理解,线性回归是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法
线性回归有很多实际用途。分为以下两大类:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。这是比方差分析进一步的作用,就是根据现在,预测未来。虽然,线性回归和方差都是需要因变量为连续变量,自变量为分类变量,自变量可以有一个或者多个,但是,线性回归增加另一个功能,也就是凭什么预测未来,就是凭回归方程。这个回归方程的因变量是一个未知数,也是一个估计数,虽然估计,但是,只要有规律,就能预测未来。
给定一个变量y和一些变量X1,…,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
线性回归模型经常用最小二乘逼近来拟合
应用多重线性回归进行统计分析时要求满足哪些条件呢?
总结起来可用四个词来描述:线性(自变量和因变量之间存在线性关系)、独立(各观测间相互独立)、正态(残差服从正态分布)、齐性(方差大小不随所有变量取值水平的改变而改变,即方差齐性)。






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
0条评论