我在python的NLTK包中使用WordNetLemmatizer()函数来对电影评论数据集的整个句子进行词形变换。
这是我的代码:
from nltk.stem import LancasterStemmer, WordNetLemmatizer
lemmer = WordNetLemmatizer()
def preprocess(x):
#Lemmatization
x = ' '.join([lemmer.lemmatize(w) for w in x.rstrip().split()])
# Lower case
x = x.lower()
# Remove punctuation
x = re.sub(r'[^\w\s]', '', x)
# Remove stop words
x = ' '.join([w for w in x.split() if w not in stop_words])
## EDIT CODE HERE ##
return x
df['review_clean'] = df['review'].apply(preprocess)
解决办法:
在df上使用预处理函数后,新列review_clean包含已清理的文本数据,但它仍然没有词形文本
解决办法:必须将'v'(动词)传递给lemmatize:
x = ' '.join([lemmer.lemmatize(w, 'w') for w in x.rstrip().split()])
例:
In [11]: words = ["answered", "answering"]
In [12]: [lemmer.lemmatize(w) for w in words]
Out[12]: ['answered', 'answering']
In [13]: [lemmer.lemmatize(w, 'v') for w in words]
Out[13]: ['answer', 'answer']
以看到很多单词以-ed,-ing结尾。








暂无数据