我正在尝试将其应用于我的数据框:对于每一行:
如果row ['colA'] =='NONE'则行['colA'] = row ['colX']
elif row ['colA']!='NONE'&row ['colB'] =='NONE'然后row ['colB'] = row ['colX']
等等。我试图用lambda函数执行此操作,以便:
dataframe.apply(lambda row: row['colA']=row['result'] if row['colA']=='NONE' else (row['colB']=row['result'] if row['colA']!='NONE' & row['colB']!='NONE'),axis=0)
但当然不行。有没有办法做类似的事情?如果不是,我可以逐行应用迭代逻辑,但我想知道是否有更快的方法来实现它。
解决办法:如果NONE是string比较布尔掩码,~则用于反转掩码和设置值loc:
df = pd.DataFrame({'colA':['NONE', 'A', 'NONE', 'D'],
'colB':['NONE', 'B', 'C', 'NONE'],
'colX':['a','b','c','d']})
print (df)
colA colB colX
0 NONE NONE a
1 A B b
2 NONE C c
3 D NONE d
m1 = df['colA']=='NONE'
m2 = ~m1 & (df['colB']=='NONE')
df.loc[m1, 'colA'] = df.loc[m1, 'colX']
df.loc[m2, 'colB'] = df.loc[m2, 'colX']
print (df)
colA colB colX
0 a NONE a
1 A B b
2 c C c
3 D d d
如果NONE是None或NaN(缺失值)更改布尔掩码:
df = pd.DataFrame({'colA':[None, 'A',None, 'D'],
'colB':[None, 'B', 'C', None],
'colX':['a','b','c','d']})
print (df)
colA colB colX
0 None None a
1 A B b
2 None C c
3 D None d
m1 = df['colA'].isnull()
m2 = ~m1 & df['colB'].isnull()
df.loc[m1, 'colA'] = df.loc[m1, 'colX']
df.loc[m2, 'colB'] = df.loc[m2, 'colX']
print (df)
colA colB colX
0 a None a
1 A B b
2 c C c
3 D d d








暂无数据