2019-02-22
阅读量:
700
如何评估卷积神经网络
评估函数:
model.evaluate提供测试数据的分数,即将测试数据提供给模型。现在,模型将预测数据的类,预测的类将与y_test标签匹配,以给我们准确性。
score = model.evaluate(x_test, y_test, verbose=0)
print('loss=', score[0])
print('accuracy=', score[1])
inpx = Input(shape=inpx)
layer1 = Conv2D(32, kernel_size=(3, 3), activation='relu')(inpx)
layer2 = Conv2D(64, (3, 3), activation='relu')(layer1)
layer3 = MaxPooling2D(pool_size=(3, 3))(layer2)
layer4 = Dropout(0.5)(layer3)
layer5 = Flatten()(layer4)
layer6 = Dense(250, activation='sigmoid')(layer5)
layer7 = Dense(10, activation='softmax')(layer6)






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
1条评论