热线电话:13121318867

登录
2019-02-22 阅读量: 700
如何评估卷积神经网络

评估函数:

model.evaluate提供测试数据的分数,即将测试数据提供给模型。现在,模型将预测数据的类,预测的类将与y_test标签匹配,以给我们准确性。

score = model.evaluate(x_test, y_test, verbose=0)

print('loss=', score[0])

print('accuracy=', score[1])

inpx = Input(shape=inpx)

layer1 = Conv2D(32, kernel_size=(3, 3), activation='relu')(inpx)

layer2 = Conv2D(64, (3, 3), activation='relu')(layer1)

layer3 = MaxPooling2D(pool_size=(3, 3))(layer2)

layer4 = Dropout(0.5)(layer3)

layer5 = Flatten()(layer4)

layer6 = Dense(250, activation='sigmoid')(layer5)

layer7 = Dense(10, activation='softmax')(layer6)

0.0000
1
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子