代码:使用replace()方法填充空值
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("employees.csv")
# Printing the first 10 to 24 rows of
# the data frame for visualization
data[10:25]
输出:

现在我们要用-99值替换数据框中的所有Nan值。
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("employees.csv")
# will replace Nan value in dataframe with value -99
data.replace(to_replace = np.nan, value = -99)
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("employees.csv")
# will replace Nan value in dataframe with value -99
data.replace(to_replace = np.nan, value = -99)








暂无数据