热线电话:13121318867

登录
2019-01-24 阅读量: 2490
距离度量——闵可夫斯基距离的定义与公式

闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

  • 闵氏距离定义:
  • 两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

闵式距离n维

其中p是一个变参数:

当p=1时,就是曼哈顿距离;

当p=2时,就是欧氏距离;

当p→∞时,就是切比雪夫距离。

因此,根据变参数的不同,闵氏距离可以表示某一类/种的距离。

  • 闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。
  • e.g. 二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。
  • 闵氏距离的缺点:
  • (1)将各个分量的量纲(scale),也就是“单位”相同的看待了;
  • (2)未考虑各个分量的分布(期望,方差等)可能是不同的。
46.1538
0
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子