2019-01-24
阅读量:
2490
距离度量——闵可夫斯基距离的定义与公式
闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。
- 闵氏距离定义:
- 两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

其中p是一个变参数:
当p=1时,就是曼哈顿距离;
当p=2时,就是欧氏距离;
当p→∞时,就是切比雪夫距离。
因此,根据变参数的不同,闵氏距离可以表示某一类/种的距离。
- 闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。
- e.g. 二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。
- 闵氏距离的缺点:
- (1)将各个分量的量纲(scale),也就是“单位”相同的看待了;
- (2)未考虑各个分量的分布(期望,方差等)可能是不同的。






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
0条评论