热线电话:13121318867

登录
2019-01-22 阅读量: 817
ROC曲线怎么理解?

ROC曲线:根据一系列不同的二分类方式(阈值或分界值),以真阳性率TPR(灵敏度)为纵坐标,假阳性率FPR(1-特异度)为横坐标绘制的曲线

灵敏度越高,假阳性越低,ROC曲线下的面积值越大越好

ROC曲线主要作用:

1.ROC曲线能很容易地查出任意界限值时的对性能的识别能力。

2.选择最佳的诊断界限值。ROC曲线越靠近左上角,试验的准确性就越高。最靠近左上角的ROC曲线的点是错误最少的最好阈值,其假阳性和假阴性的总数最少。

3.两种或两种以上不同诊断试验对算法性能的比较。在对同一种算法的两种或两种以上诊断方法进行比较时,可将各试验的ROC曲线绘制到同一坐标中,以直观地鉴别优劣,靠近左上角的ROC曲线所代表的受试者工作最准确。亦可通过分别计算各个试验的ROC曲线下的面积(AUC)进行比较,哪一种试验的 AUC最大,则哪一种试验的诊断价值最佳。

0.0000
1
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子