2019-01-16
                                阅读量:
                                1037
                            
                        岭回归分析
                        岭回归(英文名:ridge regression, Tikhonov regularization)是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。
原理
岭回归的原理较为复杂。根据高斯马尔科夫定理,多重相关性并不影响最小二乘估计量的无偏性和最小方差性,但是,虽然最小二乘估计量在所有线性无偏估计量中是方差最小的,但是这个方差却不一定小。而实际上可以找一个有偏估计量,这个估计量虽然有微小的偏差,但它的精度却能够大大高于无偏的估计量。岭回归分析就是依据这个原理,通过在正规方程中引入有偏常数而求得回归估计量的,具体分析计算过程较为复杂,详细情况可查阅相关资料。
缺点
通常岭回归方程的R平方值会稍低于普通回归分析,但回归系数的显著性往往明显高于普通回归,在存在共线性问题和病态数据偏多的研究中有较大的实用价值。
 0.0000
                                0.0000
                             0
                                0
                             1
                                1
                             
                                
                             关注作者
                                关注作者
                             收藏
                                    收藏
                                                            评论(0)
                    
 发表评论
发表评论
暂无数据
                        
                        推荐帖子
                    
                0条评论
                        0条评论
                        0条评论
                         
             
                 
                 
                            

 
                             
                             
                             
                             
                             
                            