热线电话:13121318867

登录
2019-01-15 阅读量: 816
机器学习里的线性支持向量分类

线性支持向量分类 (LinearSVC) 显示了作为 RandomForestClassifier 更多的 Sigmoid 曲线, 这是经典的最大边距方法 (compare Niculescu-Mizil and Caruana [4]), 其重点是靠近决策边界的 hard samples(支持向量).

提供了执行概率预测校准的两种方法: 基于 Platt 的 Sigmoid 模型的参数化方法和基于 isotonic regression(保序回归)的非参数方法 (sklearn.isotonic). 对于不用于模型拟合的新数据, 应进行概率校准. 类 CalibratedClassifierCV使用交叉验证生成器, 并对每个拆分模型参数对训练样本和测试样本的校准进行估计. 然后对折叠预测的概率进行平均. 已经安装的分类器可以通过

class

<cite>CalibratedClassifierCV</cite> 传递参数 cv =”prefit” 这种方式进行校准. 在这种情况下, 用户必须手动注意模型拟合和校准的数据是不相交的.

以下图像展示了概率校准的好处. 第一个图像显示一个具有 2 个类和 3 个数据块的数据集. 中间的数据块包含每个类的随机样本. 此数据块中样本的概率应为 0.5.

http://sklearn.apachecn.org/cn/0.19.0/_images/sphx_glr_plot_calibration_0011.png

0.0000
3
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子