热线电话:13121318867

登录
2019-01-14 阅读量: 804
sklearn.neighbors 中的无监督算法

>>> from sklearn.neighbors import NearestNeighbors

>>> import numpy as np

>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])

>>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)

>>> distances, indices = nbrs.kneighbors(X)

>>> indices

array([[0, 1],

[1, 0],

[2, 1],

[3, 4],

[4, 3],

[5, 4]]...)

>>> distances

array([[ 0\. , 1\. ],

[ 0\. , 1\. ],

[ 0\. , 1.41421356],

[ 0\. , 1\. ],

[ 0\. , 1\. ],

[ 0\. , 1.41421356]])

0.0000
0
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子