2019-01-14
阅读量:
804
sklearn.neighbors 中的无监督算法
>>> from sklearn.neighbors import NearestNeighbors
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)
>>> distances, indices = nbrs.kneighbors(X)
>>> indices
array([[0, 1],
[1, 0],
[2, 1],
[3, 4],
[4, 3],
[5, 4]]...)
>>> distances
array([[ 0\. , 1\. ],
[ 0\. , 1\. ],
[ 0\. , 1.41421356],
[ 0\. , 1\. ],
[ 0\. , 1\. ],
[ 0\. , 1.41421356]])






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
0条评论