第1步:导入库
# importing required libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
第2步:导入数据集
导入数据集并将数据集分发到X和y组件以进行数据分析。
# importing or loading the dataset
dataset = pd.read_csv('wines.csv')
# distributing the dataset into two components X and Y
X = dataset.iloc[:, 0:13].values
y = dataset.iloc[:, 13].values
第3步:将数据集拆分为Training集和测试集
# Splitting the X and Y into the
# Training set and Testing set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
第4步:特征缩放
在培训和测试集上进行预处理部分,例如拟合标准比例。
# performing preprocessing part
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)








暂无数据