热线电话:13121318867

登录
2019-01-14 阅读量: 714
随机梯度下降

作为另一个 classifier (分类器), 拟合 SGD 我们需要两个 array (数组):保存训练样本的 size 为 [n_samples, n_features] 的数组 X 以及保存训练样本目标值(类标签)的 size 为 [n_samples] 的数组 Y

>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = SGDClassifier(loss="hinge", penalty="l2")
>>> clf.fit(X, y)
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', max_iter=5, n_iter=None,
n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
shuffle=True, tol=None, verbose=0, warm_start=False)
0.0000
2
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子