现在,我们将开始培训。在这里,我们将执行以下任务:
- 将所有渐变重置为0。
- 向前传球。
- 计算损失。
- 执行反向传播。
- 更新所有重量。
# Training the Model
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, 28 * 28))
labels = Variable(labels)
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch: [% d/% d], Step: [% d/% d], Loss: %.4f'
% (epoch + 1, num_epochs, i + 1,
len(train_dataset) // batch_size, loss.data[0]))
最后,我们将使用以下代码测试模型。
# Test the Model
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28 * 28))
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the model on the 10000 test images: % d %%' % (
100 * correct / total))
假设您正确执行了所有步骤,您将获得82%的准确度,这与当今最先进的模型相差甚远,后者使用了一种特殊类型的神经网络架构。供您参考,您可以在下面找到本文的完整代码:
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# MNIST Dataset (Images and Labels)
train_dataset = dsets.MNIST(root ='./data',
train = True,
transform = transforms.ToTensor(),
download = True)
test_dataset = dsets.MNIST(root ='./data',
train = False,
transform = transforms.ToTensor())
# Dataset Loader (Input Pipline)
train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
batch_size = batch_size,
shuffle = True)
test_loader = torch.utils.data.DataLoader(dataset = test_dataset,
batch_size = batch_size,
shuffle = False)
# Hyper Parameters
input_size = 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001
# Model
class LogisticRegression(nn.Module):
def __init__(self, input_size, num_classes):
super(LogisticRegression, self).__init__()
self.linear = nn.Linear(input_size, num_classes)
def forward(self, x):
out = self.linear(x)
return out
model = LogisticRegression(input_size, num_classes)
# Loss and Optimizer
# Softmax is internally computed.
# Set parameters to be updated.
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
# Training the Model
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, 28 * 28))
labels = Variable(labels)
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch: [% d/% d], Step: [% d/% d], Loss: %.4f'
% (epoch + 1, num_epochs, i + 1,
len(train_dataset) // batch_size, loss.data[0]))
# Test the Model
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28 * 28))
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the model on the 10000 test images: % d %%' % (
100 * correct / total))








暂无数据