热线电话:13121318867

登录
2018-12-08 阅读量: 748
递归式特征消除

给定一个外部的估计器,可以对特征赋予一定的权重(比如,线性模型的相关系数),recursive feature elimination (RFE) 通过考虑越来越小的特征集合来递归的选择特征。

首先,评估器在初始的特征集合上面训练并且每一个特征的重要程度是通过一个coef_属性 或者feature_importances_属性来获得。

然后,从当前的特征集合中移除最不重要的特征。

在特征集合上不断的重复递归这个步骤,直到最终达到所需要的特征数量为止。

RFECV在一个交叉验证的循环中执行 RFE 来找到最优的特征数量。

0.0000
3
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子