
《数据分析专项练习题库》
《CDA数据分析认证考试模拟题库》
《企业数据分析面试题库》
《SAS EG数据统计分析题库》
单选题
1、分析教师和会计师之间收入的差异,选择什么分析方法最合适?
A、卡方分析
B、方差分析
C、两样本T检验
D、相关系数
答案C
2、分析购买不同产品的频次时,使用以下哪个任务?
A、列表数据
B、汇总表
C、汇总统计量
D、单因子频数
答案D
2、分析购买不同产品的频次时,使用以下哪个任务?
A、列表数据
B、列表报表
C、汇总统计量
D、单因子频数
答案D
3、以下哪个语句可以将字符型数值date(示例:“2001-02-19”)转换为数值类型?
A、INPUT(date,YYMMDD10.)
B、PUT(date,YYMMDD10)
C、INPUT(date,YYMMDD10.)
D、PUT(date,YYMMDD10)
答案A
4、来自于总体的样本最主要的属性是什么?
A、随机
B、有代表性
C、正态分布
D、连续分布
答案B
5、D—W统计量用于检验?
A、异方差
B、自相关
C、解释变量线性相关
D、扰动项不服从正态分布
答案B
6、什么统计量用于检验解释变量之间线性相关
A、标准化的残差
B、D—W统计量
C、Cook's D
D、膨胀系数
答案D
7、连续变量右偏的情况下,中位数在均值的?
A、左边
B、右边
C、相等
D、无法判断
答案A
8、代表变量离散程度的指标是?
A、均值
B、标准差
C、最大值
D、中位数
答案B
9、解释变量是多分类变量,被解释变量是连续变量,使用什么分析方法?
A、卡方分析
B、方差分析
C、两样本T检验
D、相关系数
答案B
10、如果在方差分析中有20个观察值,你要计算残差。那么以下哪个值会是残差和?
A、-20
B、0
C、400
D、从已知信息中无法推断
答案B
11、要进行一项研究,比较男女月均信用卡支出。可能使用哪一种统计方法?
A、单样本T检验
B、双样本T检验
C、单因素方差分析
D、双因素方差分析
答案B、C
12、你运用线性回归任务进行回归,Y是因变量,X1是唯一解释变量。如果X1的参数估计(斜率)是0,那么当X1=13时,Y的最佳预测值是?
A、13
B、Y的均值
C、0
D、X1的均值
答案B
13、方差分析表中哪个统计量是用于检验总体模型假设的?
A、F
B、t
C、R2
D、Adjusted R2
答案A
14、当你用跑步时间(RunTime)、年龄(Age)、跑步时脉搏(Run_Pulse)以及最高脉搏(Maximum_Pulse)作为预测变量来对耗氧量(Oxygen_Consumption )进行回归时,年龄(Age)的参数估计是-2.78. 这意味着什么?
A、年龄每增加一岁,耗氧量就增大2.78.
B、年龄每增加一岁,耗氧量就降低2.78.
C、年龄每增加2.78岁,耗氧量就翻倍。
D、年龄每减少2.78岁,耗氧量就翻倍。
答案B
15、在不同解释变量数量不同的模型中,以下哪个指标对选择模型没有作用?
A、R2
B、Adjusted R2
C、Mallows’Cp
D、AIC
答案A
16、在线性回归模型中,假设预测变量是正态分布的。
A、对
B、错
C、不知道
答案B
17、在标准正态分布的属性下,预期95%的学生化残差处于哪两个值之间?
A、-3 和 3
B、-2 和 2
C、-1 和 1
D、0 和 1
答案B
18、共线性违反了以下哪一假设?
A、误差独立
B、方差不变
C、误差正态分布
D、以上均不是
答案D
19、当样本量减小时,以下哪个情况会发生?
A、卡方值增大。
B、P值增大。
C、Cramer’s V 增大。
D、Odds Ratio增大。
答案B
20、研究者想测量两个二元变量间的相关性强度。他该使用以下哪个统计量?
A、Hansel 和 Gretel 相关系数
B、Mantel-Haenszel 卡方检验
C、Pearson卡方检验
D、Spearman 相关系数
答案D
21、ROC曲线凸向哪个角,代表模型约理想?
A、左上角
B、左下角
C、右上角
D、右下角
答案A
22、添加”分配项目逻辑库“在哪个菜单下?
A、文件
B、编辑
C、任务
D、工具
答案D
23、根据字符串的位置和长度取子字符串的函数是?
A、SCAN
B、SUBSTR
C、CATX
D、FIND
答案D
24、下面哪个符合日期常数的格式?
A、"2014-01-01"D
B、"01Jan2014"d
C、"2014-01-01"
D、"01Jan2014"
答案B
填空题(每空1分,共25):
1、追加表时,必须保障两个表中各个变量的名称和(变量类型)必须一致,否则会报错。
2、SAS EG中变量按测量类型,分为(名义)、(等级)和(连续)
3、SAS EG中变量按存储类型分为(字符型)和(数值型),其中日期类型属于(数值型)
4、展现连续变量的分布常用的两个图是(直方图)和(盒须图),检验连续变量是否服从正态分布,使用的图是(Q—Q图)或(P-P图)
5、大数定理使用的前提条件是随机变量必须(独立)且(同分布)。(注:写均值和标准差相等也可以)
6、多变量线形回归的前提假设是(线形模型)、(解释变量和扰动项不相关)、(扰动项独立同分布)、(解释变量不线形相关)、(扰动项独立同分布)、(扰动项正态分布)
7、可以完成排序任务的菜单有(过滤和排序)、(查询生成器)、(对数据排序)
8、流程图改名为(AUTOEXEC)可以每次打开项目时自动运行该流程图。
9、(Work)逻辑库被称为临时逻辑库,里面存放的对象每次关闭SAS时被清空。
10、在(提示管理器)和查询生成器里面可以定义新的提示。
简答题(每题3分,共9分)
1、双样本T检验和单变量方差分析的异同点,为什么说方差分析是比较均值?
2、作列联表时,解释变量和被解释变量分别放在什么位置,单元格内放置行百分比还是列百分比?什么情况下不能使用渐进卡方统计量?
3、作样本T检验时,为什么要做方差齐性检验?
问答题(每题7分,共14分)
1、列出多变量线形回归的前提假设,并指出在作回归诊断时用什么方法进行检验?
2、假设在大数据量下(多变量、多观测)作逻辑回归的流程、每步完成的任务和用到的统计方法?
立刻扫码
看更多数据分析师认证试题
——学数据分析技能一定要了解的大厂入门券,CDA数据分析师认证证书!
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅱ+Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
业务数据分析师 CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
建模分析师 CDA Level II >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
大数据分析师 CDA Level II >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
数据科学家 CDA Level III >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅱ认证证书;
2、本科及以上学历,需从事数据分析相关工作3年以上;
3、本科以下学历,需从事数据分析相关工作4年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10