
之前的文章,小编跟大家分享过一些客户细分以及用户画像等问题。其实这些都是大数据时代的一些精准营销策略和手段,那么今天就让我们一起来看什么是精准营销吧。
一、什么是精准营销
1.精准营销定义
精准营销是指企业通过定量和定性相结合的方法,对目标市场的不同消费者进行细致分析,并根据他们不同的消费心理和行为特征,采用有针对性的现代技术、方法和指向明确的策略,从而实现对目标市场不同消费者群体强有效性、高投资回报的营销沟通。
2.对于精准营销的理解
打开某一购物、视频或者资讯APP,我们就会发现这些APP会给我们推送很多内容,并且这些内容大部分都是我们感兴趣的。其实这就是精准营销,企业会根据我们浏览记录、消费行为等一些信息,有针对性地给我们推荐可能感兴趣的内容,从而提高转化的可能。
在大数据时代之前,企业营销通常只能通过一些传统的营销数据,例如:客户关系管理系统中的客户信息、广告效果、展览等一些线下活动的效果等等。营销数据的来源只限于用户某一方面的有限信息,并没有充分的提示和线索。
现阶段,处于大数据时代的企业,通常都会借助大数据技术把新类型的数据与传统数据结合起来,这样就能更全面地了解用户的信息,对用户群体进行细分,然后再对每个用户群体采取专门的,有针对性的,符合具体需求的营销行动,这就是精准营销。
3.精准营销特点
(1)精准营销最显著的特点是“精准”,也就是在市场细分的基础上,对用户进行细致分析,确定目标对象。
(2)精准营销可以提供高效、投资高回报的个性化沟通。精准营销是在确定目标对象之后,对用户生命周期的各阶段进行划分,从而来抓住用户的心理,进行更为细致、更为有效的沟通。
(3)精准营销能够为用户提供更好,更全面的个性化服务,对客户进行细致分析,并量身定做出符合用户需求的产品和服务,避免了用户从大量产品和服务中的挑选,帮助用户节约时间和精力,同时也满用户个性化的需求,增加了顾客让渡价值。
(4)精准营销借助的是数据库技术、网络通讯技术及现代高度分散物流等手段,保障了与客户的长期个性化沟通,使结果可度量、可调控,成本更低。
二、大数据精准营销流程
1.用户信息收集与整理
用户信息收集与处理是一个数据准备的过程,是数据分析和挖掘的基础,同时更是搞好精准营销的关键,需要收集和整理的信息主要包括:描述信息、行为信息和关联信息等 这3 大类。首先必须把分散的数据聚集到一个数据库中,在进行分类后,可以以用户ID为主键进行整理、转换之后,汇集到一个集中的数据库中,这就能拥有相对准确的用户数据,之后我们可以根据这些数据对用户进行全面的研究和分析。
用户细分是根据用户的特征相似程度,将用户分成若干个群体,在群体内部,这些用户的特征都非常相似,而在群体之间,用户特征差别是非常大的。区分出不同的用户群,才能针对不同用户群,展开差异管理并采取定制化服务的营销手段。
企业可以利用大数据技术在众多用户群中筛选出重点客户,利用某种规则关联,确定出企业的目标客户,从而将其有限的资源投入到这些重点用户只能够,以最小的投入获取最大的收益。
3.制定营销战略
在进行用户细分之后,我们需要结合企业战略、能力、以及市场整体环境等因素,针对每个用户群体的不同特征,为每个群体制定个性化的营销战略。每个营销战略都有着特定的目的,例如获取相似的用户、提升销售,或者防止用户流失等。
4.设计精准营销方案
一个出色的营销方案能够聚焦到某个目标用户群,甚至可以根据每一位用户不同的兴趣特征为他们个性化的市场营销组合方案,例如有针对性的产品组合方案、产品价格方案、一对一的沟通促销方案等。
5.反馈营销结果
在营销活动结束之后,我们需要对营销活动执行过程中,所收集到的各种数据进行综合分析,从中挖掘出最有效的企业市场绩效度量,并与企业传统的市场绩效度量方法进行比较,并确立基于新型数据的度量的优越性和价值,从而评估此次营销活动的执行、渠道、产品和广告的有效性,为下一阶段的营销活动打下良好的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08