
对于企业来说,为了让业务做得更好,必须知道自己的用户都有哪些特征,例如用户的年龄,消费习惯等等,这时候就需要构建企业自己的用户画像了。而构建用户画像的基础就先给我们的用户打上标签。
一、用户画像与用户标签
1.用户画像
用户画像,也就是用户信息标签化,通过对用户的社会属性、消费习惯、偏好特征等各个维度数据的收集,刻画出用户或者商品的特征属性,并对这些特征属性进行分析、统计,进而挖掘出潜在价值信息,抽象出用户的信息全貌。
2.用户标签
简单点来说,用户标签,就是指对用户某个维度特征的描述。
3.用户画像的基础工作就是给用户打“标签”,标签通常都是人为规定的高度精炼的特征标识,比如性别、年龄、职业、地域、爱好等,之后将用户的所有标签综合起来,基本上该用户的立体“画像”就能勾勒出来了。
二、 用户画像标签类型
根据对用户打标签的方式,可以将用户标签分为以下三个类型
1. 统计类标签
这类标签是用户画像的基础,也是最常见的标签类型,就是我们通常所说的,性别、年龄、城市、活跃度等信息,这些数据我们可以从用户的注册、访问以及消费数据中统计出来。
2. 规则类标签
这类标签是根据用户行和确定的规则而产生。例如,网站上“活跃”用户的定义为“近一个月交易次数≥2”。在构建用户画像的实际过程中,这种规则类标签是由运营人员和数据人员共同协商来确定的。
3. 机器学习挖掘类标签
这类标签是由机器学习挖掘产生的,可以用来预测判断用户的某些属性或行为。
一般企业在构建用户画像的实际操作过程中,统计类和规则类的标签就能满足应用需求,机器学习挖掘类标签多通常被用于预测场景。
三、用户画像标签的应用场景
1.辅助业务分析。通常情况下,业务人员能够通过用户标签快速获得用户的特征信息,从而获得业务灵感。
2.丰富数据分析维度。通用户标签,我们能够对业务数据进行更深层的对比分析,从而辅助业务落地。
3.将用户群体细分,实现精细化运营,针对不同的细分客户群,采取差异化的运营和营销方法进行驱动和挽回,达到事半功倍的效果。
4.作为数据产品的基础,像是广告系统、个性化推荐系统、CRM 管理工作等。自动化的业务系统能够将用户标签的价值发挥到最大。
四、怎样给用户画像
1.收集用户数据。搜集用户所有相关数据,包括静态数据,例如性别,职业,地域等;以及动态数据,包括用户浏览的网页、商品,发表的评论等。
2.通过上述数据,为用户贴上相应的标签,标签代表着某一用户对该内容是否有兴趣、偏好、需求等,指数代表着某一用户对该内容的兴趣、需求、购买欲程度等;
3.利用用户标签标签建模,主要包括人物、时间、地点这三个要素,通俗点来说,就是什么用户在什么时间什么地点做了什么事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23