
卡方分布是著名的三大抽样分布之一,在各种统计检验中都有着重要的意义。小编今天就跟大家分享一下有关卡方分布的一些理论知识,希望对于大家有所帮助。
一、什么是卡方分布?
1、卡方分布来源
卡方分布是阿贝(Abbe)在1863年首次提出的,后来由海尔墨特(Hermert)以及现代统计学的奠基人之一的卡·皮尔逊(C.K. Pearson)分别在1875年和1900年推导出来,是统计学中的非常实用的一个有名的分布。
2、卡方分布定义
概率密度
设X为自由度为的卡方随机变量, 那么它的概率密度函数就是
R代码绘制:
x <- seq(0, 60, 0.005) f_nx <- function(x, n){ x^(n/2-1)*exp(-x/2)/(2^(n/2)*gamma(n/2)) } ## 当然你也可以用R自带的 dchisq()函数来计算概率密度 n <- 1 plot(x, f_nx(x, n), type='l', ylim=c(0, 0.25), ylab=expression(f[n](x))) text(3, 0.25, paste('n =', n)) n <- 4 lines(x, f_nx(x, n), type='l', col='red') text(5, 0.17, paste('n =', n) , col='red') n <- 10 lines(x, f_nx(x, n), type='l', col='blue') text(12, 0.1, paste('n =', n) , col='blue') n <- 20 lines(x, f_nx(x, n), type='l', col='purple') text(20, 0.075, paste('n =', n) , col='purple') n <- 30 lines(x, f_nx(x, n), type='l', col='green') text(30, 0.062, paste('n =', n) , col='green') n <- 40 lines(x, f_nx(x, n), type='l', col='pink') text(44, 0.05, paste('n =', n) , col='pink')
当自由度n越大,概率密度曲线越趋于对称
4、χ2 变量性质:
卡方分布拥有具有k个自由度的,是一个由k个独立标准正态随机变量的和而构成的分布通常用于卡方检验中。
二、什么是卡方检验?
1、卡方检验是一种用途很广的计数资料的假设检验方法。属于非参数检验,主要是对两个或两个以上样本率( 构成比)以及两个分类变量的关联性分析进行对比。卡方检验的根本思想就是比较理论频数和实际频数的吻合程度或者拟合优度问题。/2、卡方检验的计算公式为:
其中,A是实际值,T是理论值。
x2是用于衡量实际值与理论值的差异程度的,这也是卡方检验的核心思想,其主要包含了以下两个信息:
1. 实际值与理论值偏差的绝对大小(由于平方的存在,差异是被放大的)
2. 差异程度与理论值的相对大小
3、
对某无序分类变量各水平在两组或多组间的分布是否一致进行考察可以说是卡方检验最主要的用途了,除此之外.卡方检验还有很多其他用途。主要可以分为以下几个方面:
(1)检验某个连续变量的分布与某种理论分布是否一致。
(2)检验某个分类变量各类出现的概率与指定概率是否一致。
(3)检验某两种方法的结果是否保持一致。
(4)检验某两个分类变量是不是相互独立的。
(5)检验控制某种或者某几种分类因素的作用之后,判断两个分类变量是不是相互独立的。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09